Pros and Cons of Stem Cell Sources and their availability in Africa

Dr Jaimendra Singh
Inkosi Albert Luthuli Central Hospital
Durban, South Africa
Introduction

• The ability to perform a haematopoietic stem cell transplant depends on the availability of a suitable donor.
• Haematopoietic stem cells may be obtained by collection of bone marrow, mobilisation and collection of peripheral blood stem cells or collection of umbilical cord blood
• 32,000 patients in search of a donor for stem cell transplantation.
• 16,000 patients searching for an unrelated bone marrow donor, or alternative stem cell transplantation.
• Less than 30-40% of patients searching for a donor will find one
Stem Cell Sources

- HLA Identical Sibling
 - First Choice
 - Bone Marrow vs PBSC

- Unrelated donor
 - 10/10 or 9/10

- Cord Blood

- Haploidentical

- 1/3 chance

- 25 million donors worldwide
 - SABMR 67000, Nigerian Registry 300

- 600000 units
 - No Public Cord Banks in Africa

- Inevitable
Figure 1: HIV prevalence by age and sex, South Africa, 2012
Obstacles in finding Donors in South Africa

- HIV
- Large families but not all same parents
- Fear
- Costs

- Ethnic and genetic diversity
- Largest population group – under represented on the Bone Marrow local registry
Algorithm of donor search

1. Patient and family HLA typing

2. HLA matched sibling
 - 1st choice
 - HSCT

3. NO HLA matched sibling
 - Search simultaneously for an alternative donor
 - HLA ≥ 9/10 matched unrelated donor
 - Unrelated CB
 - HLA 4-6/6 matched
 - ≥3x10⁷ TNC/kg
 - Related haploidentical donor

Consider: indication of the HSCT, pts and donor features (CMV, ABO, age, donor sex)

If urgent HSCT needed ➔ prefer CB or related haploidentical donor

Expertise of the centre is very important

If low cell dose in a single unit UCB, consider a double UCBT
Peripheral Blood Stem Cells or Bone Marrow

Which is superior
Bone Marrow

ADVANTAGES
• Single collection
• No need for special catheter placement
• Use of cytokines not necessary

DISADVANTAGES
• Performed in theatre as it requires a general anaesthesia
• Slower neutrophil and platelet engraftment
• Higher rates of morbidity for the donor
Peripheral Blood

ADVANTAGES

• Does not require a general anaesthesia and can be performed in the outpatient setting
• Faster neutrophil and platelet engraftment
• Lower rates of morbidity
• Infusion of higher number of T cells with reduced capacity to produce IFN-g
• Enhanced early T cell reconstitution

DISADVANTAGES

• Collection may take several days
• Haemorrhage, embolism and infection are possible complications related to catheter placement
• Increased incidence of anti-HLA immunisation
• Increased early anti-A/B red cell antibody production
• Increased risk of extensive chronic GVHD
• Robust and reproducible CD34 counting should be available+apheresis machines
Bone Marrow versus PBSC

- 12 randomised trials have been performed to answer the question – no consistent results between the trials seen for any of the major outcomes.
- PBSC transplants are associated with more aggressive cGVHD
- No overall survival benefit except in a subgroup of patients with unfavourable prognostic features.
Allogeneic Peripheral Blood Stem-Cell Compared With Bone Marrow Transplantation in the Management of Hematologic Malignancies: An Individual Patient Data Meta-Analysis of Nine Randomized Trials

Stem Cell Trialists' Collaborative Group
Allogeneic Peripheral Blood Stem-Cell Compared With Bone Marrow Transplantation in the Management of Hematologic Malignancies: An Individual Patient Data Meta-Analysis of Nine Randomized Trials

Stem Cell Trialists’ Collaborative Group
Bone Marrow versus PBSC Survival in Aplastic Anemia

- **BM (N = 722)**
- **PB (N = 151)**

Survival probability over months with statistical significance: $P = 0.02$
Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors

Claudio Anasetti, M.D., Brent R. Logan, Ph.D., Stephanie J. Lee, M.D., M.P.H., Edmund K. Waller, M.D., Ph.D., Daniel J. Weisdorf, M.D., John R. Wingard, M.D., Corey S. Cutler, M.D., M.P.H., Peter Westervelt, M.D., Ph.D., Ann Woolfrey, M.D., Stephen Coban, M.D., Gerhard Ehninger, M.D., Laura Johnston, M.D., Richard T. Maziarz, M.D., Michael A. Pulsipher, M.D., David L. Porter, M.D., Shin Mineishi, M.D., John M. McCarty, M.D., Shakila P. Khan, M.D., Paolo Anderlini, M.D., William I. Bensinger, M.D., Susan F. Leitman, M.D., Scott D. Rowley, M.D., Christopher Bredeson, M.D., Shelly L. Carter, Sc.D., Mary M. Horowiz, M.D., and Dennis L. Confer, M.D., for the Blood and Marrow Transplant Clinical Trials Network*

<table>
<thead>
<tr>
<th>Outcomes at 2 years</th>
<th>PBSC</th>
<th>BM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival, intent-to-treat</td>
<td>51% (45%-57%)</td>
<td>46% (40%-52%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Overall survival, transplanted</td>
<td>52% (46%-58%)</td>
<td>48% (42%-54%)</td>
<td>0.37</td>
</tr>
<tr>
<td>Disease-free survival, transplanted</td>
<td>47% (40%-53%)</td>
<td>44% (38%-50%)</td>
<td>0.60</td>
</tr>
<tr>
<td>Relapse</td>
<td>28% (22%-34%)</td>
<td>28% (23%-34%)</td>
<td>0.88</td>
</tr>
<tr>
<td>Non-relapse mortality</td>
<td>26% (20%-31%)</td>
<td>27% (22%-33%)</td>
<td>0.67</td>
</tr>
<tr>
<td>ANC > 500 by day 28</td>
<td>95% (80%-99%)</td>
<td>86% (78%-92%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Acute GVHD II-IV by day 100</td>
<td>47% (40%-53%)</td>
<td>46% (39%-52%)</td>
<td>0.87</td>
</tr>
<tr>
<td>Acute GVHD III-IV by day 100</td>
<td>16% (12%-21%)</td>
<td>14% (10%-19%)</td>
<td>0.37</td>
</tr>
<tr>
<td>Any chronic GVHD</td>
<td>53% (45%-60%)</td>
<td>40% (33%-47%)</td>
<td>0.02</td>
</tr>
</tbody>
</table>
PBSCs are used in >90% of allogeneic transplants in South Africa.

PBSCs may improve outcome in patients with unfavourable prognostic features.

It is associated with significant risk of extensive chronic GVHD both in the sibling and MUD settings.

This trade-off between benefits and harms should be taken into account in the choice of stem cell source.
Algorithm of donor search

Patient and family HLA typing

- HLA matched sibling
 - 1st choice
 - HSCT

- NO HLA matched sibling
 - Search simultaneously for an alternative donor
 - HLA ≥ 9/10 matched unrelated donor
 - Unrelated CB
 - HLA 4-6/6 matched
 - ≥3x10⁷ TNC/kg
 - Related haploidentical donor

Consider: Indication of the HSCT, pts and donor features (CMV, ABO, age, donor sex)

If urgent HSCT needed → prefer CB or related haploidentical donor

Expertise of the centre is very important

If low cell dose in a single unit UCB, consider a double UCBT
Unrelated Donors

Bone Marrow Donors Worldwide
www.bmdw.org

- 25 million donors
- 73 registries
- 52 countries
 - South Africa – 67000
 - Nigeria – 300
- 600000 Cord Blood
- 47 Cord Banks
- 33 Countries
- 0 in Africa
Matched Unrelated Donor Transplants

• Several factors should be considered in selection of the optimal URD in order to reduce transplant related mortality – the most important is the degree of mismatch

• Within the past decade, **high resolution typing** techniques have been developed to allow identification of the polymorphic alleles

• This combined with improved supportive care has resulted in the outcomes of matched unrelated donor transplants being almost similar to matched related donor transplants
Matched Unrelated Donor Transplants

• MUD transplants increase donor availability but

• 25 million donors – certain ethnic groups not well represented

• Costs +/- $40-50000

• Time to acquire graft – may not be appropriate in urgent transplants
• Among world populations, Africans present the highest level of genetic diversity
• The complex genetic makeup of the HLA loci in Africans bears the marks of the history of each region which includes waves of migration, different levels of admixture with other populations, changes in the effective population size and strong selective pressure exerted by numerous pathogens in Africa.
• Africa is the most genetically diverse geographical region in the world and consequently it harbours diverse and novel HLA alleles.
• Africa can’t rely on established international registries to find unrelated donors for its population – need to establish own registries, larger number of donors.
Matched Unrelated Donor Transplants

Numbers of HLA antigens and alleles 1968 - 2014
Algorithm of donor search

1. **Patient and family HLA typing**
 - **HLA matched sibling**
 - 1st choice
 - **HSCT**
 - **NO HLA matched sibling**
 - **Search simultaneously for an alternative donor**
 - **Unrelated CB**
 - HLA 4-6/6 matched
 - $\geq 3 \times 10^7$ TNC/kg
 - **Related haploidentical donor**

Consider: indication of the HSCT, pts and donor features (CMV, ABO, age, donor sex)

- If urgent HSCT needed \Rightarrow prefer CB or related haploidentical donor
- Expertise of the centre is very important
- If low cell dose in a single unit UCB, consider a double UCBT
Cord Blood Transplantation

- Has been used since 1988 to successfully treat children and adults needing stem cell transplantation
- Cord blood is easily collected (non invasively), and provides a rapidly available source of stem cells
- 600,000 cord units available worldwide
- Currently no public cord blood bank in Africa
Cord Blood Transplantation

Advantages

• More than 25 years experience
• Immediate availability
• Absence of donor risk, and few ethical problems
• Generally applicable for use in children and adults with malignant and non-malignant disorders
• Cord Blood is immature so HLA mismatches are accepted
• Genetically diverse populations are more likely to benefit from cord blood
• Survival outcomes comparable to other alternate stem cell sources
• Use extended in older populations with reduced intensity conditioning and double cord transplant
• Low risk of transmissible infections
Cord Blood Transplantation
Disadvantages

• Delayed haematopoietic recovery due to relatively low Total Nuclear Cell dose delivered and HLA mismatches
• Longer Length of hospital stay
• GVHD risks are much lower which may offer better quality of life but less graft versus tumour effect in aggressive malignancies.
• Cost
• No Public Cord Blood Banks in Africa
Double Cord Transplant

• Improves engraftment by increasing total cell dose
• Lowers risk of relapse
• Higher GVHD incidence
• Reduced TRM when compares to single unit historic controls
• Cost of acquisition of two cord blood units and cost effectiveness of the procedure.
Algorithm of donor search

Patient and family HLA typing

- HLA matched sibling (1st choice)
 - HSCT
- NO HLA matched sibling
 - Search simultaneously for an alternative donor
 - Related haploidentical donor

Consider: indication of the HSCT, pts and donor features (CMV, ABO, age, donor sex)

If urgent HSCT needed → prefer CB or related haploidentical donor

Expertise of the centre is very important

If low cell dose in a single unit UCB, consider a double UCBT
Haploidentical Transplants

- Haplo-related transplants was pioneered in the 1970’s – most results have been provided by single centres and few large series have been published
- Both BM (primed with G-CSF or not) and peripheral blood is used
- Selection of maternal overt paternal donors has been shown to result in better survival as the maternal immune system is tolerised to foetal antigens during pregnancy
- Use of haploidentical sibling with noninherited maternal antigens associated with lower TRM outcomes compared with haploidentical siling donors with noninherited paternal antigens
Haploidentical Transplants

- Only a haplotype (3/6 or 4/8 loci) is shared between the donor and the recipient.
- Virtually everyone has at least an haploidentical donor – immediately available
- Applicable to children and adult with malignant and no malignant disorders
- Cost of collection is less than cord blood or MUD
- Results comparable to other stem cell sources
- New technologies have been recently introduced with promising results (Baltimore)
Haploidentical Transplants
Disadvantages

- High risk of graft failure and GvHD
- T cell depletion or enhanced GvHD prophylaxis is required resulting in delayed immune reconstitution (increased risk of infections and relapse)
- Few publications on long term results
The Baltimore Concept
Cylophosphamide Post Transplant

Post transplant
cyclophosphamide
allodepletion of haplo BM

Day 0 Day +2

T-cell activation T-cell proliferation

Alloreactive T cells
Peptide-MHC CD80/CD86 CD28 TCR
CD40 CD40L

Activated effector T cell
Receptor IL-2

Donor and recipient

Cy day +3 +4

Non-alloreactive T cells

Lymphs show heterogeneous ALDH1 expression
Most T cells, esp. those proliferating, express low levels of ALDH1 and are sensitive to Cy
Memory T cells, like other stem-like cells, express high levels and are resistant to Cy

anti-infectious immunity
anti-tumour immunity

Luznik et al 2010
HLA-Haploidentical Bone Marrow Transplantation for Hematologic Malignancies Using Nonmyeloablative Conditioning and High-Dose, Posttransplantation Cyclophosphamide

Leo Luznik,1* Paul V. O’Donnell,2,3* Heather J. Symons,1 Allen R. Chen,1 M. Susan Leffell,1 Marianna Zaburak,1 Ted A. Gooley,2,3 Steve Piantadosi,1 Michele Kaup,1 Richard F. Ambinder,1 Carol Ann Huff,1 William Matsui,1 Javier Bolanos-Meade,1 Ivan Borrello,1 Jonathan D. Powell,1 Elizabeth Harrington,2 Sandy Warnock,2 Mary Flowers,2,3 Robert A. Brodsky,1 Brenda M. Sandmaier,2,3 Rainer F. Storb,2,3 Richard J. Jones,1 Ephraim J. Fuchs1

Cyclophosphamide (Cy) 14.5 mg/kg/day

Bone Marrow Infusion

Fludarabine 30 mg/m²/day

Day -6 -5 -4 -3 -2 -1 0 5 10 20 30 40 90 180

BMT

G-CSF

TBI 200 cGy

MMF

Tacrolimus

Cy 50 mg/kg/day, day 3 (n=28) or days 3,4 (n=40)
T-Cell-Replete HLA-Haploidentical Hematopoietic Transplantation for Hematologic Malignancies Using Post-Transplantation Cyclophosphamide Results in Outcomes Equivalent to Those of Contemporaneous HLA-Matched Related and Unrelated Donor Transplantation

Asad Bashey, Xu Zhang, Connie A. Sizemore, Karen Manion, Stacey Brown, H. Kent Holland, Lawrence E. Morris, and Scott R. Solomon

J Clin Oncol 2013, 31:1310-1316
Haploidentical Transplants

- G-CSF primed, unmanipulated bone marrow transplantations from an haploidentical family donor followed by post transplant cyclophosphamide is feasible and very effective.
- The procedure does not require expensive lab facilities or personnel specifically devoted to cell manipulation, provides an easier management of the transplant workup, does not involve costs related to unrelated graft acquisition.
- May extend the practice of haploidentical transplant to all centres involved in an allogeneic transplant program.
Multiple factors involved in the Donor and HSCs source choice

Donor’s
Safety & features

Patient’s & Disease’s
features

Centre Clinical Approach
& Expertise

Transplant
setting

Cost

The wide choice of donor sources has extended the possibilities of offering HSCT to almost all patients who need this procedure. However, in Africa there are still many obstacles and challenges....