ACCESS TO SAFE AND EFFECTIVE BLOOD TRANSFUSION INCLUDING BLOOD COMPONENT THERAPY

3rd Workshop of the WBMT
14-15th November 2014
Cape Town - South Africa

DR. JUSTINA K. ANSAH
GHANA
Outline

• Introduction
• Transplantation and BTS in Africa
• Organizational requirements
• Blood donors and blood collection
• Component preparation, testing and distribution
• Storage and transportation
• Blood component stock management
• Blood component therapy
• Constraints
Introduction

- Blood transfusion services (BTS) play a vital role in clinical transplantation programs through provision of blood and components for transfusion support to transplant patients.

- A well-organized BTS with an effective blood component programme and quality systems in all areas is a prerequisite for safe and effective use of blood including component therapy.
<table>
<thead>
<tr>
<th>Country</th>
<th>Scope of Transplantation services</th>
<th>Type of blood service</th>
<th>Blood Component</th>
<th>% Vol. donations GBDS WHO 2012</th>
<th>Total 2012 Health Expend.</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>HSCT Solid organ</td>
<td>NCBTS</td>
<td>RBC, FFP, CRYO, PC</td>
<td>100%</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SANBS WPBTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td>HSCT Solid organ</td>
<td>National Blood Transfusion centre of Tunisia</td>
<td>RBC, FFP, CRYO, PC</td>
<td>32%</td>
<td>7.0</td>
</tr>
<tr>
<td>Algeria</td>
<td>HSCT</td>
<td>Agence National du Sang</td>
<td>RBC, FFP, CRYO</td>
<td>60%</td>
<td>5.2</td>
</tr>
<tr>
<td>Egypt</td>
<td>HSCT Solid organ</td>
<td>Egyptian National Blood Transfusion Service</td>
<td>RBC, FFP, CRYO, PC</td>
<td>64%</td>
<td>5.0</td>
</tr>
<tr>
<td>Morocco</td>
<td>HSCT</td>
<td>Centre National de Transfusion Sanguine, Morocco</td>
<td>RBC, FFP, CRYO,</td>
<td>63%</td>
<td>6.4</td>
</tr>
<tr>
<td>Libya</td>
<td>Kidney</td>
<td>Libyan Blood Transfusion Service</td>
<td>No data</td>
<td>No data</td>
<td>3.9</td>
</tr>
<tr>
<td>Nigeria</td>
<td>HSCT Kidney*</td>
<td>NCBTS & others</td>
<td>No data</td>
<td>97% (NBTSN only 17 centres)</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBTSN (3% collections)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghana</td>
<td>Kidney (2008)</td>
<td>NCBTS</td>
<td>RBC, FFP, CRYO, PC</td>
<td>45%</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBSG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Organizational Requirements

• Nationally coordinated BTS with centralization or regionalization of blood processing and testing
 • economies of scale (resources & technology)
 • uniform standards of performance
 • improved quality and safety

• Assessment of clinical demands and feasibility of blood component programme.
 • clinical demand for blood and components
 • available medical and diagnostic services
 • capacity of BTS
 • may consider apheresis programme if demand cannot be met from components prepared from WB
Organizational Requirements

- Advocate for adequate and sustainable financial resources
 - adequate finances to meet additional cost of component preparation
 - suitable premises that comply with cGMP
 - sufficient number of trained staff
 - appropriate technology, specialized equipment for blood collection, processing, testing, storage and transportation and a preventive maintenance system
 - reliable supply of blood collection bags, leukodelpletion filters, reagents etc.
Organizational Requirements

• Appropriate infrastructure
 • suitable working environment for donor selection, blood collection, processing, testing and storage
 • appropriate technology, equipment and materials
 • reliable transportation system
 • reliable water and power supplies with back-up systems

• effective planning and communication system
 • set and evaluate targets for donor recruitment, blood collection and component preparation
 • collaboration with clinical staff for appropriate components for transfusion support

• waste management system
Organizational Requirements

• Effective quality system
 • specifications for blood components, equipment and materials
 • validation of processes, procedures, equipment and materials
 • regular maintenance and calibration of equipment to ensure quality and minimize down-time
 • standardized procedures
 • hygiene and safety of environment, equipment, blood donors and staff
 • documentation of all processes and accurate labelling to ensure traceability
 • ongoing training of staff
 • monitoring of all activities to ensure continuous quality improvement

• Suitable regulatory framework
Blood Donors and Blood Collection

- A reliable base of regular VNRBD a prerequisite for safe and effective blood component programme to meet transfusion requirements.

- Effective donor education, recruitment, motivation, call-up and retention strategies to promote regular donations by suitable donors
 - panel of regular VNRBD
 - national donor selection and deferral criteria, including criteria specific for component preparation to transplant patients.
 - mechanism for setting blood collection targets to meet component preparation targets and clinical demand
Blood Donors and Blood Collection

- Effective blood collection
 - systematic planning and preparation for fixed and mobile sessions

- planning of number and type of collections per session from whole blood/apheresis donors
- appropriately trained and adequate staff
- appropriate equipment
- suitable blood collection bags
Component Preparation, Testing & Distribution

• Preparation of components only from WB or apheresis donors who meet standard selection criteria
 • Prevalence of blood groups and alloantibodies

• Testing of all donated units and discard of all blood and components reactive for any TTI
 • mandatory tests- HIV 1&2, HBV, HCV, Syphilis
 • additional tests – CMV, malaria, rare blood groups, HLA-matching
 • alloantibodies
Component Preparation, Testing & Distribution

- Quality system and cGMP for all aspects of component preparation and distribution.
 - use of efficient/closed system
 - RBC, PC, FFP, cryoprecipitate

- Compliance with specifications for components, equipment e.g. irradiators and materials

- Labelling system for untested, quarantined and available stock

- Mechanism for quarantine and release
Component Preparation, Testing & Distribution

- Provide special blood components
 - irradiated components
 - leucodepleted components
 - CMV-negative components
 - HLA-matched components
 - rare RBC units, stem cell processing

- System for recall of defective components

- Cleaning and maintenance of all areas and equipment to minimize risk of contamination of components

- Quality monitoring of components, including statistical process control
Storage and Transportation

• Correct storage and transportation of blood bags, donor specimens, collected units, blood components, reagents and material
 • to processing centres and testing laboratories within prescribed temperature and time limits

• Separate storage areas for untested, quarantined and available units

• Suitable areas and equipment for storage and transportation that meet specifications
Storage and Transportation

- Monitoring and recording of temperatures in all cold chain equipment

- Corrective and preventive action in case of deviation from specified temperature ranges and time limits
Blood Component Stock Management

• Efficient stock management system are needed in the BTS and hospitals
 • formal agreement and ongoing communication between BTS and hospitals on optimum stocks, order and supply
 • ensure stock level optimum at all times in right mix.
 • monitoring and evaluation of component availability and utilization, including shortfalls and outdating
Blood Component Therapy

• Optimum use of blood as a scarce national resource requires
 • national and hospital guidelines on use of blood and blood products and alternatives to transfusion
 • HTC to develop local policies and guidelines and monitor component utilization
 • training of clinical staff involved in the prescription administration and monitoring of components
 • accurate transfusion records to ensure traceability of blood and efficacy of component usage

• Haemovigilance system for monitoring, investigation and reporting of adverse transfusion events
• ongoing assessment of current and future clinical needs for components and special products
Constraints

• Inadequate Infrastructure
 • appropriate equipment
 • standard reagents & consumables
 • reliable utilities & transportation

• Lack of political will

• Lack of support and commitment from health authorities

• Inadequate resources
 • human
 • financial
 • technological

• Lack of coordination of BTS

• Unstable voluntary blood donor base

• Lack of specific training for BTS and clinical staff
Thank You

National Blood Service, Ghana
NBSGhana
www.nbsghana.org