Donor choice

WBMT workshop Hanoi 10-12 November 2011

Donor choice

Type of donor Related

- HLA identical sibling Bone marrow or cord blood
- Haploidentical family donor

Unrelated

- Matched unrelated adult donor
- Mismatched unrelated cord blood donor

Source of cells

- Bone Marrow
- G-CSF mobilized peripheral blood stem cells
- Cord blood

Investigational

- T cell depleted PBSC
- Donor lymphocyte infusion (DLI)
- Mesenchymal stromal cells (MSC)

HLA typing

• Related transplants

Type for HLA-A, B, DRB1 of both parents and all siblings low resolution should be enough to determine haplotypes

• Unrelated transplants

Allele typing for HLA-A,-C,-B,-DRB1, DQB1, DPB1 Look for a 10/10 or 9/10

Other factors to be considered

- **ABO** better if no major mismatch
- CMV
- Hepatitis
- Sex :avoid female donor immunized by previous pregnancies
- Age: younger donors

Stem cell sources for allogeneic HSCT (US, 1988-2010)

NMDP Transplants by Cell Source

Adult Recipients (Age 18 Years and Older)

NMDP Transplants by Cell Source

Pediatric Recipients (Age Younger Than 18 Years)

NMDP Transplants Distribution of Cell Source

Source: National Marrow Donor Program FY 2010

Factors associated with outcomes after allogeneic HSCT

Searching and identifying an alternative stem cell donor Main criteria to be considered

	UBMT		UCBT	Haplo-HSCT
Information on A + B + DRB1 typing (%)	16 – 56		~ 80	100
Median search time (months)	3 – 6		< 1	immediate
Donors identified but not available (%)	20 – 30		~ 1	None
Rare haplotypes represented (%)	2 – 10		20	Not applicable
Main limiting factor to graft acquisition	HLA identity		Cell dose	Poor mobilization
Ease of rearranging date of cell infusion	Difficult		Easy	Easy
Potential for immunotherapy	Yes		No (?)	Yes limited
Potential for viral transmission to recipient	Yes		No	Yes
Potential for congenital disease transmission	No		Yes	No
Risk for the donor	Low		No	Low
Main problems to be overcome	GvHD	C	Graft failure, delayed immune recovery	Delayed immune recovery, lack of T- cell-mediated GVL effect

Donor Selection – HLA Matching

- General agreement that fully HLA-matched donor is the goal
- An 8 of 8 (HLA-A, B, C, DRB1)-sequence matched URD is not available for many patients who need a transplant
- Prior large studies suggest conflicting strategies for choosing the best partially matched donor
 - Antigens vs. alleles
 - Class I vs. class II
 - Specific loci

Any Single Locus Mismatch

9/10 associated with worse survival, DFS, TRM, AGVHD

	n	RR (95% CI)	P-value
Survival	952	1.17 (1.06-1.329)	0.002
DFS	945	1.16 (1.05-1.28)	0.003
TRM	945	1.31 (1.16-1.47)	<0.0001
Relapse	945	0.90 (0.81-1.00)	0.04
Engraftment	956	0.90 (0.80-1.01)	0.06
Acute GVHD	957	1.35 (1.19-1.56)	<0.0001
Chronic GVHD	910	0.96 (0.91-1.03)	0.25

Conclusions

- Single mismatches HLA-A or DRB1 appear more poorly tolerated than at HLA-B and HLA-C
- Each mismatch is associated with a 9-10% decrease in survival, and the absolute decrement in survival is most pronounced in the early stage patients

The HLA laboratory can help in providing a probability estimate to identify a 10/10 matched donor

Probability to identify a 10/10 matched donor

high	>95%
	priority to non-HLA factors (age,
	CMV,)
intermediate	≈ 50%
	if no 10/10 match after testing \approx 5 donors
	consider a 9/10 match
	or go on if transplantation not urgent

low

<5%

consider rapidly a 9/10 match or alternative therapy (CB/haplo/autologous)

Tiercy JM, BMT 2007 modifie

Leukemia-free Survival in children with leukemia

Strategy of alternative stem cell donor in children with non malignant disorders

Metabolic Disorders (better results in early ages) HLA identical= Unrelated 6/6 CB> MUD10/10=UCB5/6>CB4/6 high cell dose

Primary Immunodeficiencies (Urgent situations) HLA identical > UCB=HLA mismatched Donor= MUD (10/10) (rare)

Aplastic Anemia (congenital or acquired) HLA identical>MUD 10/10>MUD 9/10 >> CB (6/6 or 5/6 cell dose >4.5x10⁷/Kg) Haplo HSCT under investigation

Hemoglobinopathies HLA identicah cabes alternative donors awdes iskestigations Do not forget to search for antibodies against HLA in cases of HLA mismatched HSCT

Effect of Stem Cell Source on Transplant Outcomes in Adults with Acute Leukemia

A Comparison of Unrelated Bone Marrow, Peripheral Blood Progenitor Cells and Single Cord Blood

From the Center for International Blood and Marrow Transplant Research, Eurocord-ALWP-EBMT and New York Blood Center

M Eapen, V Rocha, G Sanz et al

Leukemia-free Survival -Adjusted for Disease Status at Transplantation-

Comparison between stem cell source

Minnesota and FHCRC Seattle

C Brunstein and C Delaney

*Cell dose according to HLA mismatches HLA: 0-1/6 HLA: 2/6 >3x10⁷/kg TNC > 4x10⁷/kg TNC >1x10⁵/kg CD34 >2x10⁵/kg CD34

* T cell depleted graft: >10x10⁶/kg CD34, 1x10⁴/kg CD3