Hematopoietic Progenitor Cell Product Characterization

> Carolyn A. Taylor, Ph.D. Professor of Medicine Director of BMT Program Cell Processing Laboratory

Product Testing and Characterization Goals

- Required to ensure product:
 - Safety
 - Purity
 - Potency
- Questions to be addressed this talk:
 - What to test
 - When to test
 - How to test

What Testing (1)

- Function of product type and processing
- All Product Types and Processing
 TNC
 - Viability
 - Sterility
- HPC Products {HPC(A), HPC(M), HPC(CB)}
 Hematopoietic stem cell content (CD34)
 TC Products {TC-T, TC-CTL, etc}
 TC content (e.g. T cells)

What Testing (2)

- Based on Processing
 - RBC removal
 - RBC content
 - Mononuclear Cell Enrichment
 - MNC content
 - Subset enrichment or depletion
 - Enriched or depleted target cells

When To Test

At receipt

Viability

Sterility-Not required but may be useful

Post Processing known to affect content
 Relevant subset (s)

Example: Density gradient separation to remove plasma and red blood cells. Also expect loss of CD34+ cells, therefore should repeat testing for CD34+ cells in addition to assessment of rbc content.

When To Test

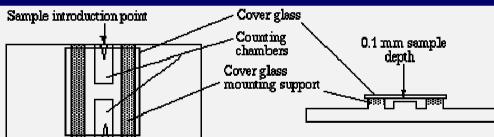
- Prior to Infusion or/Cryopreservation
 TNC
 - Viability
 - HPC content if relevant
 - Sterility-Required
- Testing requirement for product release must be defined

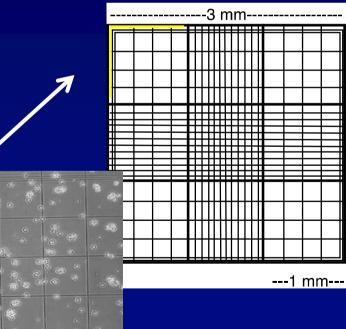
How To Test

Total Nucleated Cell Counts
Surrogate measure of graft quality
Does not measure potency

Expected % CD34+ HPC by HPC Product			
Allo-HPC(M)	HPC(CB)	Allo-HPC(A)	
1.0%±0.33%	0.93%±0.44%	0.85%±0.46%	

Manual Methods


Electronic Methods


Manual Counting Method

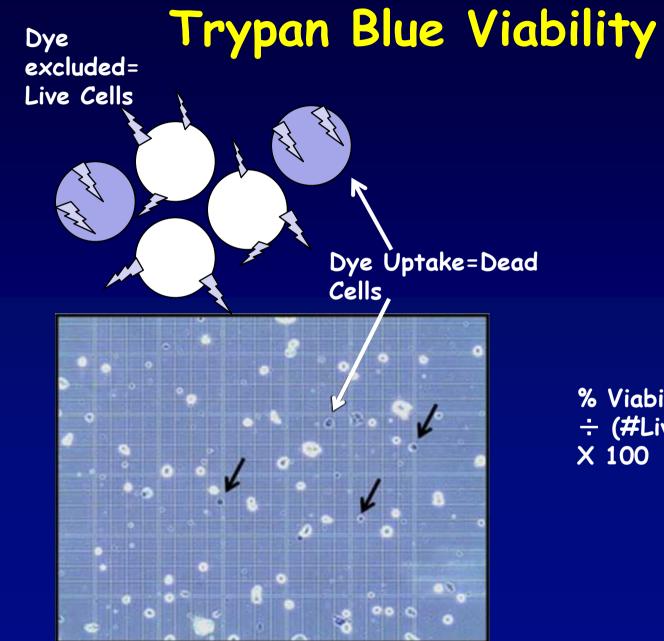
- 1. Take representative sample- Ensure product is well mixed
- 2. Prepare dilution- Typically 1:10 for apheresis products. Target ≤100 cells per quadrant.
- 3. Load Counting Chamber, both sides, Do not overfill

1. Count WBC in 4 outer Quadrants, determine average

Average cells in 4 outer quadrants $\times 10^4 \times \text{dilution}$ = cells per mL

Electronic Counting Methods

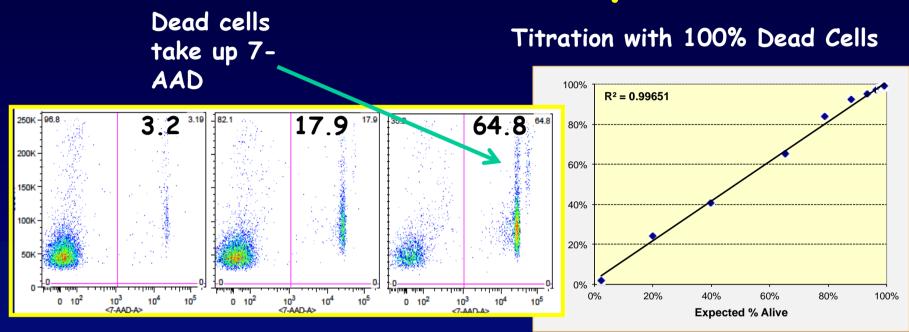
- Method
 - Take representative sample- Ensure product is well mixed



- Prepare dilution- Typically 1:10 for apheresis products
- Apply sample to hematology analyzer
- Results report from analyzer

Aspect	Manual Method	Electronic Method
Red Blood Cells	Manual Lyse, or Distinguish	Lysed automatically
Accuracy	Fewer events but better for marrow	More events but may ct marrow fat
Precision	Less (more manual steps)	More
Cost	Less	More (could share)
Subjectivity	More	Less

Viability Methods


- Dye Exclusion Assays Taken up by dead cells, excluded by cells with intact membranes
- Light or phase contrast Microscope
 - Trypan Blue-Most common in HPC laboratories
 - Erythrosin B
- Fluorescent Microscope
 - Acridine Orange with Propidium Iodide Detects living and dead cells with two dyes
- Flow Cytometry Based Assays
 - 7-amino-actinomycin D (7-AAD)- Most common
 - Propidium Iodide (PI)

0.4% Trypan Blue

% Viability= (# Living ÷ (#Living + # Dead)) X 100

7-AAD Viability

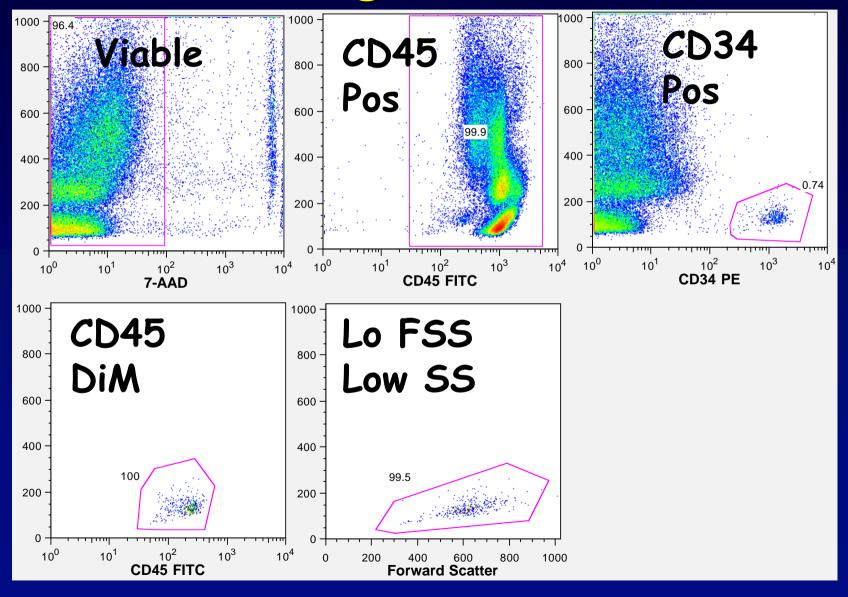
Advantages compared to Trypan

•Less subjective

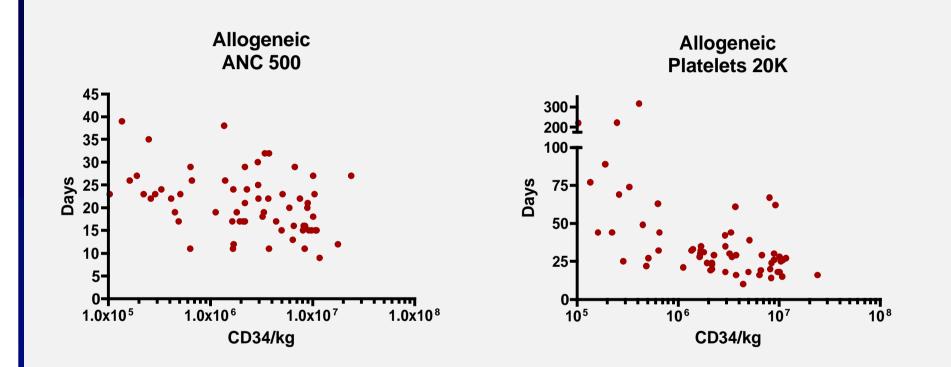
Can be used in conjunction with CD34 assessment
Most accurate with lyse/no wash methods for assessing thawed products (e.g. cord blood)
Documentation of results

Sterility

- To assess Aerobic and Anaerobic Bacteria and Fungus
- Culture Based Methods
 - Bactec/ BacTAlert- Most Common in US Labs
 - Requires validation by each laboratory for the products and reagents used. Should include:
 - Innoculum size (most 0.5 to 1 mL product)
 - Detection of appropriate range of bacteria and fungus for your situation
 - Guidance available in US
 - Typically product samples innoculated in processing laboratory, cultures performed in institution Microbiology Laboratory-Must have notification system
- Rapid Methods- May be needed for extensively manipulated products (e.g. cultured cells)
 - Gram stain
 - Endotoxin testing
 - Mycoplasma testing


Hematopoietic Stem Cell Assessment (Potency Assays)

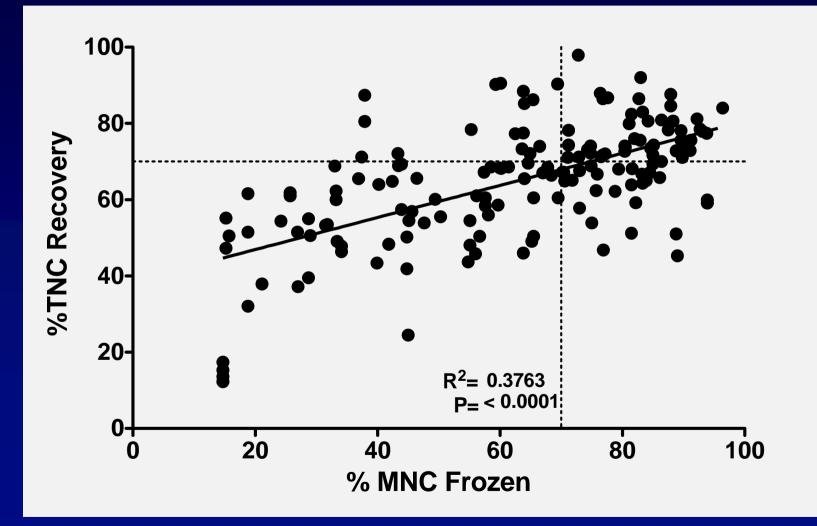
- Assays to detect HSC found to be associated with engraftment
 - Flow Cytometry Based
 - CD34+ Cell content- Most common
 - CD133+ Cell content
 - Aldehydehyrogenase bright (ALDH) cells
 - Hematopoietic Colony Forming Cell Assays (CFU)- Required for Cord Blood Banks, not typically performed for other HPC products


CD34+ Cell Assessment

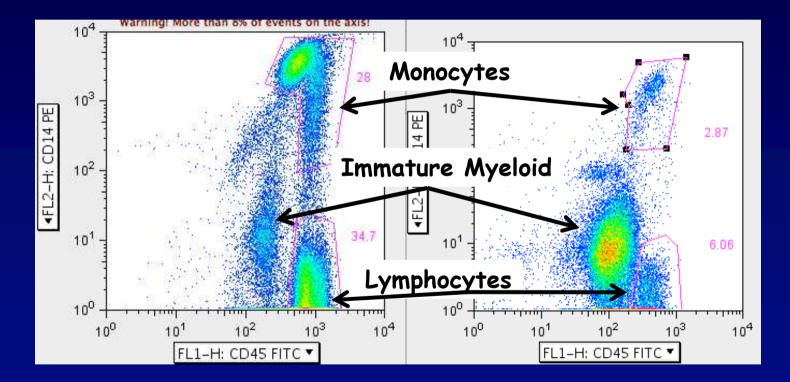
- Assay Requirements
 - Class III CD34 antibody conjugated to bright fluorochrome (PE or APC recommended)
 - CD45 in every tube
 - Viability dye in every tube-7-AAD recommended
 - Use multiple parameters to ensure accurate detection to include:
 - Moderate to bright expression of CD34
 - Moderate to dim expression of CD45
 - Low forward and low side scatter
 - Acquire sufficient cells to collect minimally 100 events in final CD34+ gate (if possible)

ISHAGE Gating Method-CD34

CD34 Dose



Day of engraftment versus CD34 dose per kg. Allogeneic patients.


Mononuclear Cell (MNC) Differentials

- Defined as lymphocytes and monocytes within the Cellular Therapy Product
 - Useful as a surrogate for CD34+ cells, since CD34+ cells have the characteristics of mononuclear cells
 - MNC correlate best with recovery post thawing for HPC(A) products
- Methods of detection
 - Manual Differential Most common?
 - Flow Cytometry Differential Accurate and can be performed with CD34-assessment
 - Hematology Analyzer Differential Poorly correlates with manual method for BM, moderate correlation with HPC(A) products

MNC Content Vs Thaw Recovery

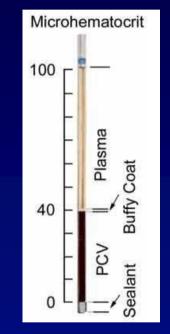
MNC Assessment-Flow Differential

HPC(A)

HPC(BM)

Red Blood Cells in HPC Products

- Bone Marrow
 - High RBC content, High Volume
 - Typically give fresh
- Cord Blood
 - High RBC content, Low Volume
 - RBCs lyse at thaw
- HPC, Apheresis Products
 - Low RBC content, typically ≤5%
 - Standard Methods for RBC removal ineffective

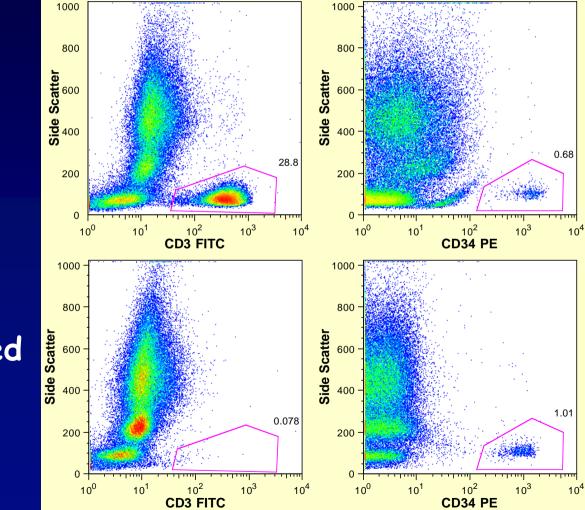

Red Blood Cell Removal

- Purpose:
 - To reduce the content of donor red blood cells reactive with recipient antibody. MCW limit <20mL total or 0.3 mL/kg.
 - Volume reduction
- Methods For Removal:
 - Gel Sedimentation (Plasmagel, HES). Hct 1-2%.
 - Mononuclear Cell Preparation
 - Density Gradient Method. Hct < 0.5%
 - Centrifugation Method. Hct 1-5%

Do not work for PBPC

RBC Test Methods

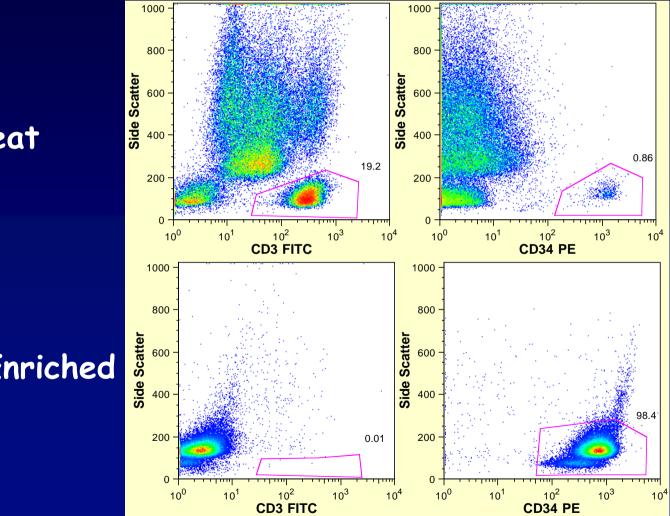
- Hematocrit-Ratio of RBC to the total volume
 - Manual Centrifugation Methods
 - Requires specialized centrifuge
 - Can be difficult to distinguish packed RBC layer from WBCs for highly cellular products
 - Hematology Analyzer Most common method
- RBC Count
 - Manual Method- Uses counting chamber as described for TNC
 - Hematology Analyzer


Rare Cell Detection-Subset Depletion/Enrichment

- Most Common Procedures
 - CD34+ Cell Enrichment
 - Typically performed for CD3-removal
 - Requires rare event detect of CD3+ cells
 - CD3+ cell Reduction, \pm CD19+ cell reduction
 - Detection of CD34+ cells
 - Rare event detection of CD3+ and CD19+ cells
 - CD56+ NK Cell-Enrichment \pm CD3-Reduction
 - Rare event CD3+CD56- cell detection

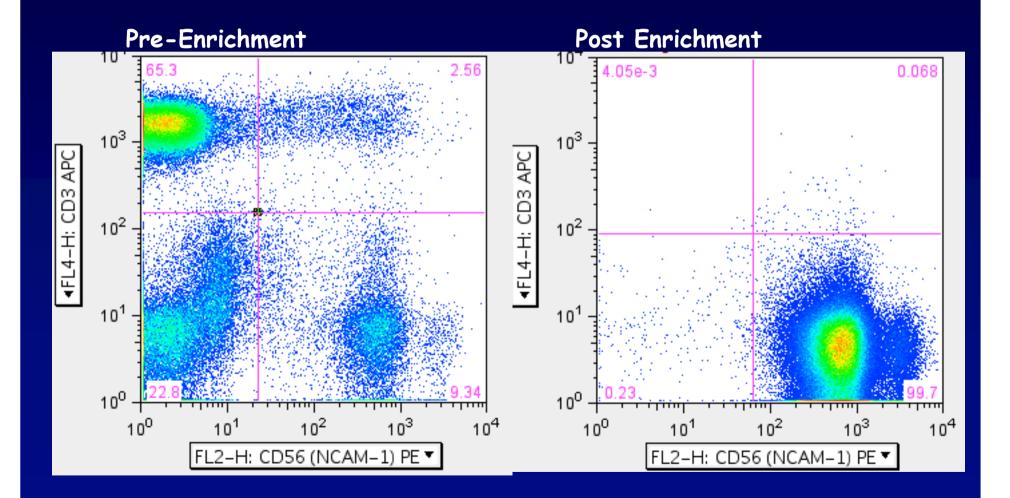
Rare Cell Detection Methods

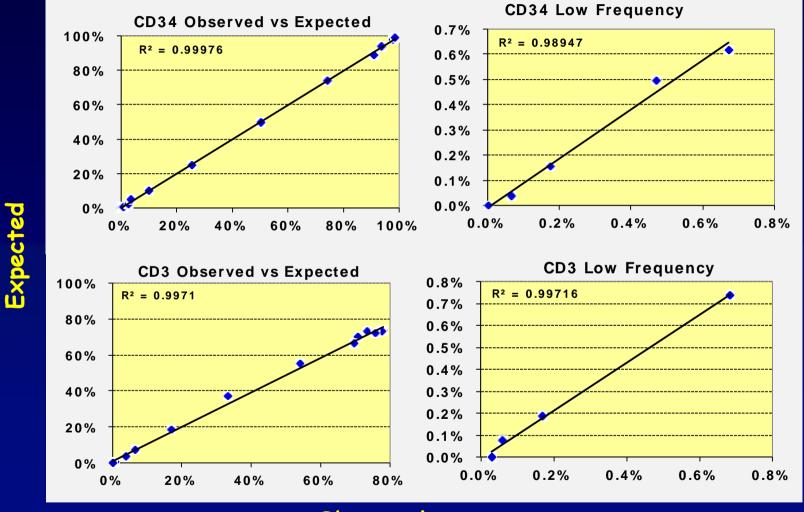
- Multi-parameter Flow Cytometry- Only reliable method currently in use
 - Use enriched population to help set gates for reduced population
 - Ensure that antibody used for detection not blocked by antibody used for cell separation
 - Collect sufficient events-Target 100 cells in final analysis gate
 - Use bright fluorochrome for rare events


CliniMACS CD3-Reduced

Pre Treat

CD3 Reduced


CliniMACS CD34-Enriched


Pre Treat

CD34 Enriched

NK Cell Enrichment

CD34 & CD3 Detection Limits

Observed

Other Assessments for Release

- Labeling
 - Composition (Cell count, volume, additives)
 - Storage conditions and expiration
 - Patient identification, Unit Identifier
 - Harvest and Processing Center identification
 - Warnings and Precautions
- Product Appearance
 - Appears as expected, no aggregates, clumps, unexpected color or turbidity
 - Container is intact, no evidence of damage or leakage