

Acquired Aplastic Anemia : The Ideal Conditioning Regimen

Amr Nassar, MD National Research Center, Cairo- Egypt Special Considerations when Planning HSCT for Bone Marrow Failure Disorders

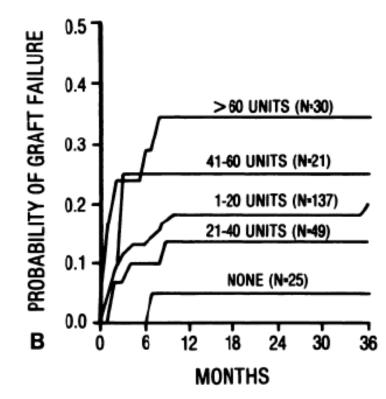
AIM : RESTORE ACTIVE HEMATOPOIESIS

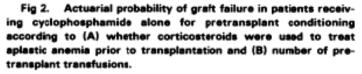
No Malignancy to Eradicate with GvL

NO BENEFIT OF GVHD / No GvL

Myeloablation not required (Aplastic)

Need to Secure Engraftment


Young Patients


USE RIC REGIMEN

MAXIMAL LYMPHO-/IMMUNO ABLATION

FERTILITY PRESERVATION

Actuarial probability of graft failure in AA patients according to number of pretransplant transfusions MONTHS

Period: 1978-1986

Champlin et al., Blood 73: 606-613 (1989)

- Matched Sibling HSCT
- Matched Unrelated Donor HSCT
- Cord Blood Transplantation

Matched Sibling Donor HSCT for Aplastic Anemia

Cyclophosphamide only conditioning (CY only) Cyclophosphamide and ATG (CY/ATG) Fludarabine based (FLU/CY)+/-ATG Alemtuzumab based conditioning Elderly patients

Cyclophosphamide Only Conditioning

CY is considered the traditional backbone for conditioning of bone marrow failure

CIBMTR prospective randomized study

CY50 mg/kg D-5 to D-2

Add Horse ATG 30 mg/kg D-5 to D-3

5 years probability of survival is 74% for CY and 80% for CY/ATG (P=0.44)

GF, GVHD, similar on both groups

The study was not adequately powered to detect significant differences between the two groups

Champlin RE, et al. Blood 2007; 109:4582-4585.

Antithymocyte Globulin (ATG) Based Conditioning - I

ATG based conditioning :

First explored in Boston and Seattle group In context of transplants in patients with graft failure but later on applied to first transplants

Subsequent studies:

CY/ATG combination for upfront HSCT : excellent engraftment rate, (>90%)

relatively low incidence of both aGVHD and cGVHD with Excellent long term overall survival (80-90% at 10 years)

Smith BR, et al. Transplantation. 1985;39:671-673 Storb R, et al. Blood. 1976;48:817-841 Storb R, et al. Blood. 1994;84:941-949 Kahl C, et al.. Br J Haematol. 2005;130:747-751

ATG Preparations

Commercial Name	Manufacturer	Source	Current Status
Lymphoglobulin	Genzyme	Horse	Discontinued
ATGAM	Pharmacia/UpJohn Now Pfizer	Horse	Commercially available Not available in Europe
Thymoglobulin	Sanofi	Rabbit	Available
ATG-Fersenius	Fersenius	Rabbit	Available

ATG Preparations

- Rabbit and equine ATG have different pharmacokinetics profile:
 - Rabbit ATG (rATG): 29.8 days
 - Horse ATG (hATG): 5.7 days
- Consequently :
 - rATG can deplete transplanted donor T cells in vivo much more efficiently as opposed to hATG
 - Can prevent acute GVHD but at the expense of possibly higher incidence of graft rejection and delayed immune reconstitution.

Bunn D et al. Clin Nephrol. 1996; 45(1):29–32 Vo PT, Pantin J, Hematol Oncol. 2015; 26;8:78

Alemtuzumab Conditioning Regimens

- Alemtuzumab (CAMPATH) monoclonal Ab against CD52
- CD52, a GPI-linked membrane protein expressed on almost all WBC but not on CD34 HSC
- Potent lympholytic agent
- Detected in the plasma for several weeks after administration resulting in depletion of recipient auto reactive lymphocytes
 - Prevents GVHD by depletion of donor allo-reactive T-cells

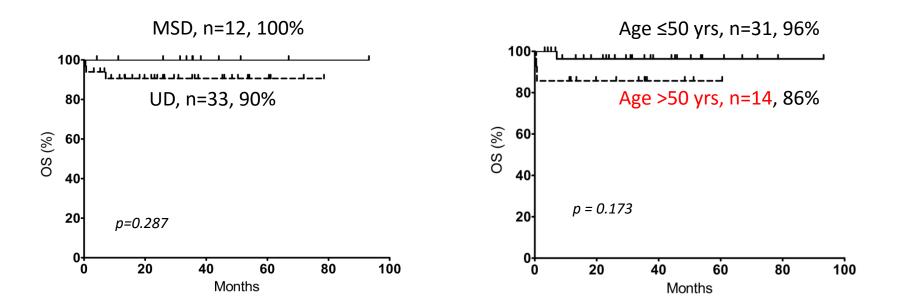
Alemtuzumab (CAMPATH-IG) Conditioning Regimens

- Use of Alemtuzumab was consistently associated with high incidence of mixed chimerism which tips the balance away from GVHD
- High survival of early patients with graft failure was in part due to a high incidence of autologous recovery

Alemtuzumab Conditioning Regimens

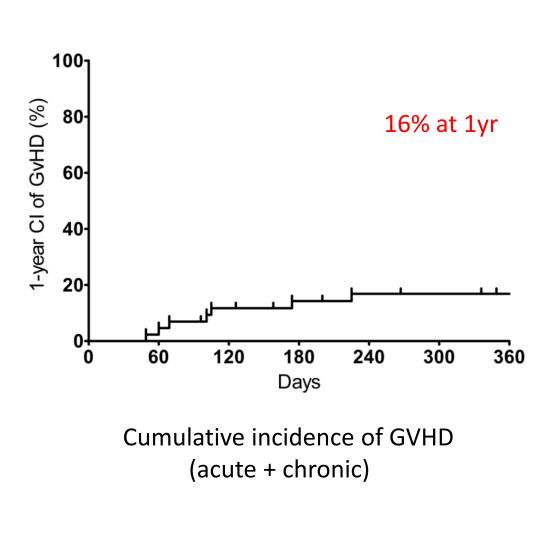
 Significant proportion (20-40%) of patients with AA have an associated PNH clone with defective expression of CD52 on T-cells.

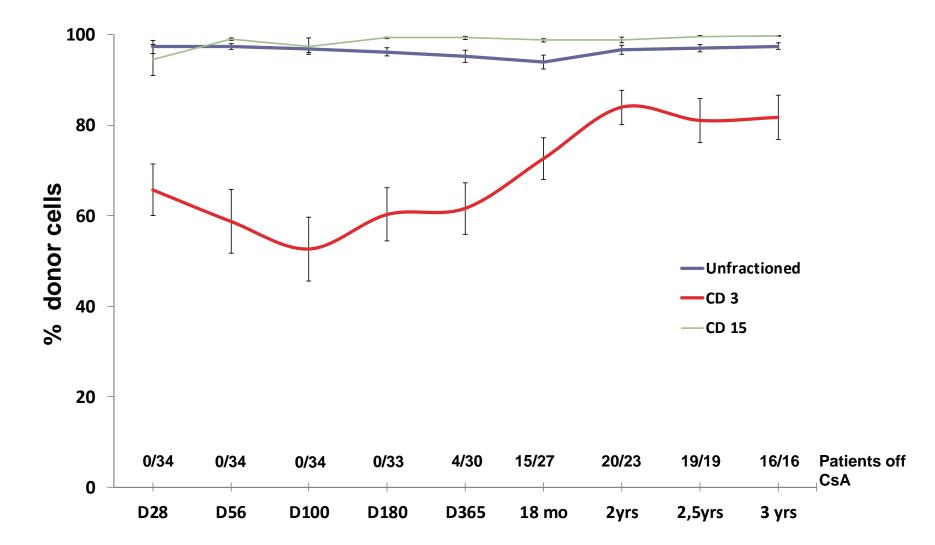
• In these patients ATG is considered as an alternative



King's FCC conditioning for idiopathic SAA

- FLU 30mg/m2 x 4
- CY 300mg/m2 x 4
- Alemtuzumab (Campath-1H) 0.2mg/kg x 5
- Post graft ciclosporin (no methotrexate needed)
- For MUD HSCT, no irradiation needed


N = 45, transplanted 2007-2015



Grimaldi et al, unpublished data 2016

FCC HSCT - Patient outcomes

N=	45
Median days to ANC > 0.5x10 ⁹ /l	12 (10-22)
Median days to platelets > 20x10 ⁹ /l	12 (9-61)
Graft failure (primary)	1 (2.3%)
1 year TRM	3 (6.6%)
Acute GVHD	6 (13.6%) - 5/6 grade I/II, skin only
Chronic GVHD Mild/Moderate/ Severe	6 (13.3%) 4/1/1

Persistent mixed T-cell chimerism despite CsA discontinuation

Grimaldi et al, unpublished data 2016

Studies on CAMPATH based regimen conditioning for SAA patients

Study '	Design	No.	Age	Donor type, n (%)	Conditioning	OS	EFS	aGVHD	cGVHD	infections	Graft failure
MARSH et al, 2011	retrospective multicenter study	50	35 (8-62)	MSD N= 21 (42%) MUD n= 29 (58%)	fludarabine 30 mg/m2 IV/dcX4 CY 300 mg/m2 IV /d X4 Alemtuzumab 40-100 mg/d iv or s.c x4	88% @2 yrs	80 % @2 yrs	N= 7 (13.7%)	N= 2 (4%)	EBV 4(8%) CMV 9(19%) ADENOVIRUS 7 (15%)	N= 6 (12%),
Samarasinghe et al, 2012	multicentre retrospective study	43	11 (0·5–17)	MUD	Flu 30 mg/m2 x 5 Cy 120-200 mg/kg X 2-4 d Campath (0·9–1 mg/kg)	95% @5 yrs	NA	2-3%	2.3%	CMV (22·7%)	0
Hamad et al 2014	retrospective study	41	37 (17-59)	MSD MUD MMRD	Cy 22% Cy/flu 71% Flu/BU 2% Flu/ Bu /TB 4% GVHD prophylaxis CAMPATH/ CSA 37 (90) CAMPATH/ tacrolimus 3 (7) CAMPATH/ MMF 1 (2) CAMPATH dose 60 mg 35 (85) 50 mg 6 (15)	85 % @3 yrs	N/A	NONE >G1	1/33 (3%)	Bacterial sepsis 21 (51%) CMV 19/25 (79%)	4 (10%)
Gupta et al.2004	retrospective study	33	16 (4-45)	N/A	CY 50 mg/kg x 4 0.75 -1 mg/kg x 4-8 d	81% @5 yrs		4 (13%)	0 (0%)	15 (45%)	8/33 (24%)
Novitzky et al, 2013	Prospective study	30	19 (7-60)	MSD	fludarabine 30 mg/m2 x 5 days cy 60 mg/kg x 2 days Campath "in the bag"	100% @1 yr	96% @1 yr	0	0	7 (23)	2/30
Kanda et.al. 2013	retrospective study	15	34 (20–46)	MUD	Fludarabine 30 mg/kg x 4 CY 25 mg/kg x 4 Campath 0.16 mg/kg/day x 6 TBI 2 Gy	83.3 % @1 yr	NA	0	0	NA	8.3 %
Siegal et al 2008	retrospective study	10	40 (25–56)	MRD 8 (80) Alternative donor (MMFD, MUD) 2 (20)	High-dose CY based 3 (30) Fludarabine based 7 (70)	7/10 (70) @1 yr	7/10 (70) @1 yr	1/9 (11%)	0	Bacterial 6/10 (60) Fungal 2/10 (20) Viral CMVreactivation 5/6 (83) H.Z 2/10 (20)	1/10 (10%)
Gupta et al, 2005	retrospective study	7	13 (8-35)	MUD	Alemtuzumab 0.2 mg/kg/day x 5 Flu 30 mg/m2 x 5 CY 20 mg/kg x 4	6/7 @10 mo	6/6 @6mos	3/7	1/6	CMV 1/6	0

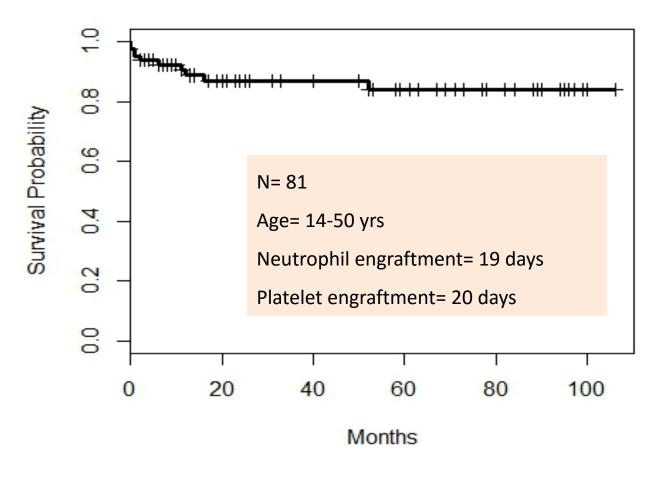
Radiation-based Conditioning Regimens for MSD HSCT

- Lower rates of graft failure, at the expense of :
 - Significant early toxicities like GVHD and pneumonitis
 - Late toxicity including:
 - Secondary malignancies and
 - Reduced growth and development in children

Justified in alternate donor or allo-immunized

Sanders JE, et al. Blood. 2011;18:1421–8 Champlin RE, et al. Blood. 1989; 73:606-613 Gluckman E, et al. Blood. 1992;79:269-275 Deeg HJ, et al. Blood. 1996;87:386-392

Fludarabine based conditioning

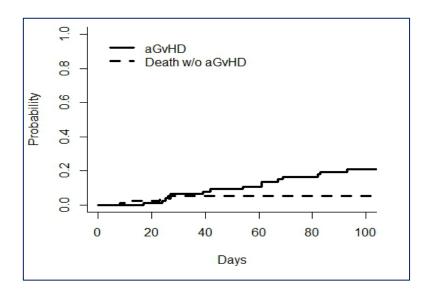

FLU/CY

- increasingly used in situations where ATG is not available or cannot be used
- Extremely low toxicity and low risk of graft failure
- Possible increase in GVHD risk remains an important concern

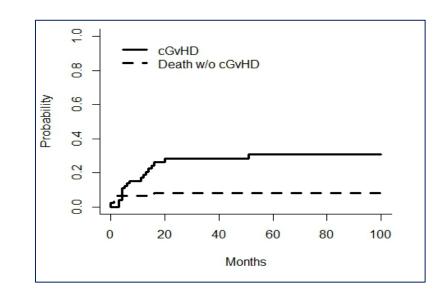
Maury S, et al. Haematologica 2009; 94:1312-1315 AL-Zahrani H,et al .BBMT 2011; 17: 717-722

Study	Design	Number	Age	Donor type	Conditioning	OS	EFS	aGVHD	cGVHD	Graft failure
Bacigalupo et al, 2005	Retrospective multicenter	38	14 (3-37)	MMRD n=5 MUD n=33	Flu/Cy/ ATG	29/38	92% at 1 year	2/35	2/35	7/38
Bacigalupo et al, 2010	Retrospective	100	13 (3=51) 27(7-53)	Alternate donor	Flu/Cy/ ATG n=52 Flu/Cy/ATG/TBI n=48	73% 79%	-	18% 7%	1/52 4/48	17% 17%
Maury et al, 2009	Prospective	30	46 (31-66) 39(30-67)	MSD	Flu/Cy±ATG n=30 Cy±ATG n=239	77% 60% at 5 years	-	3 (10%) 46 (19%)	3(13% 21 (13%)	0% 11% 1ry GF
Alzahrani et al, 2011	Retrospective	38	20(14-36)	MSD	Flu/Cy	79% at 43 months	-	4 (11%)	8(25%)	1(3%) at 43 months
George et al, 2007	Retrospective	35	20.8(5-43)	MSD	Flu/Cy±ATG	29/35 (82.8%)	29/35 (82.8%)	9/31(29%)	8/25(32%)	3/35(8.5%)
Go´mez- Almaguer et al.2006	Retrospective	23	25(4-65)	MSD	Flu/Cy±Bu	88% at 1500 days	-	0	0	8.7% at 1500 days
Xue et al. 2015	Prospective	20	7.5 (3-14)	MSD n= 13 MUD n=7	Flu/Cy/ ATG	19/20	18/20	0	0	1/20
Kang et al, 2014	Prospective	28	13.5(1-30)	MUD	Flu/Cy/ ATG	67.9%	-	13/28	2/25	0
Kudo et al, 2015	Retrospective	55	9 (1-15)	MSD MMRD MUD CB	Flu/Cy± ATG± TBI	45/55 (82.9%) at 4 years	81.2%	12/55	7/55	9/55
Mahmoud et al, 2015	Retrospective	273	19.7(1.5- 51)	MSD	Flu/Cy n=181 Cy/ATG n= 92	74% at 8 years	-	42/273 (15%)	70/248 (28%)	3/273

KFSHRC FLU/CY Experience : Overall Survival



OS at 5-years= 80%


Shaheen M, et al . Unpublished data, 2016

KFSHRC FLU/CY Experience

Acute GvHD(≥grade II)

Chronic GvHD

Cumulative Incidence aGvHD(≥grade II) = 20.9% Death w/o aGvHD= 5% Cumulative Incidence: *cGvHD*= 31% Death w/o cGvHD= 8%

Shaheen M, et al . Unpublished data, 2016

Elder patients with SAA

Seminars in Hematology 2000; 37: 69

Age PMN	10 yy	20 yy	30 yy	40 yy	50 yy
0	24	20	14	16	-2
100	19	14	8	1	-7
200	14	9	3	-4	-11
300	16	5	-1	-7	-14
400	6	1	-4	-10	-16
500	3	-2	-7	-12	-17

Positive values: BMT has superior (+) survival compared to IS Negative values: BMT has inferior (-) survival compared to IS

conditioning MSD in older patients

- Standard CY/ATG
- Limited data on the advantage of including FLU in the conditioning in these patients
- May receive a reduced intensity conditioning regimen using FLU/CY alone or more optimally Flu/CY with adjusted doses of ATG or Alemtuzumab (FCC)

Conditioning for MUD HSCT

- MUD second line treatment and possibly upfront treatment for young patients with very severe aplasia.
- Induction of engraftment against immune barriers
- Standard CY/ATG did not provide sufficient immuno and lympho ablation for sustained engraftment in MUD HSCT
- Addition of TBI to CY/ATG in MUD : Best survival was achieved with a TBI dose of 200 rads

Conditioning for MUD HSCT

- Having established the optimal dose of TBI of 200 rads, a North American study looked at the optimal dose of Cyclophosphamide with fixed doses of ATG, Fludarabine and TBI 200.
- CY 0, 50, 100, 150 mg/kg were tested
- CY 0 closed after 3 graft failures
- CY 150 closed due to excess toxicity
- Leaving CY 50-150 as the possible dose choice
- More recent study, CY 50 vs CY 100 in combination with fixed doses of ATG, Fludarabine and TBI 200

	Cyclophosphamide 50 mg/kg (n=38)	Cyclophosphamide 100 mg/kg (n=41)
Graft failure, primary and secondary	3 (8%)	6(15%)
Survival	37 (97%)	39 (95%)
Major regimen-related toxicity* (grade 3 or higher)	4 (11%)	9 (22%)
Alive and engrafted	35 (92%)	35 (85%)

Tolar J, et al. Biol Blood Marrow Transplant. 2012 18(7):1007-11 Anderlini P, et al. Lancet Haematol. 2015; 2(9); 367-375

Conditioning for MUD HSCT

- 1. CY is important component of conditioning, 50-100 mg (data support 50)
- 2. TBI helps to promote engraftment and prevent rejection, but should be limited to 200 rads
- 3. Cy> 100 should not be used in combination with TBI
- 4. Fludarabine and ATG help in promoting engraftment and preventing rejection
- 5. The combination of CY 50/TBI 200/Flu/ATG is the most optimal conditioning at present
- 6. FCC is a strong emerging radiation free alternative with encouraging results.

CBT for Acquired Aplastic Anemia

- Only few reports, poor outcome. Good outcome in related CBT
- 2. Possible option for patients who had failed ISP, no MUD with available CB units with adequate TNC
- 3. Large cohort of 31 Japanese patients, 2 years OS 41%.
- 4. Eurocord 71 patients (1996-2009)

Median age 13 years, 28 adults (9 with PNH), RIC regimen was used on 68%, 3 years OS 38%

Yoshimi A, et al, BBMT 2008; Peffault de Latour R , et al, BBMT 2011; 17: 78

Conditioning for Unrelated CBT Ongoing French Society of SCT and Eurocord (APCORD-Protocol) Prospective Phase II Study on Unrelated CBT

Fludarabine	30 mg/m ²	D-6 to D-3
Cyclophosphamide	30 mg/kg	D-6 to D-3
Thymoglobulin	2.5 mg/kg	D-3 to D-2
ТВІ	200 rads	D-2

3-55 years, failed ISP, no MUD, no clonal evolution, KPS > 60, one or two units CB with total \ge TNC 4 x 10⁷.

Result is still pending

Conditioning for Bone Marrow Failure of PNH

- PNH/AA patients transplanted for concomitant AA should follow the same conditioning regimens used for AA for related and MUD HSCT
- Some investigators suggested that a "graft versus PNH" effect may be needed to eradicate the PNH clone, especially in nonhypoplastic PNH
- No specific guidelines are available for patients transplanted for thrombosis or hemolytic indications,
- Myeloablative conditioning have been used in non-hypoplastic PNH (even Busulfan-based)

Takahashi Y, et al. Blood. 2004;103:1383-1390 Raiola AM, et al. Haematologica. 2000;85:59-62

Acknowledgement

KFSHRC HSCT Team • Hazzaa Al-Zahrani Syed Osman Ahmed Marwan Shaheen Ghuzayel Al-Dawsari Feras Al-Fraih Naeem Chaudhari Fahad Al-Mohareb Fahad Al-Shareef Said Yusuf Mohamed Walid Rasheed Amr Hanbali Riad El-Fakih Amr Nassar (Erfan Hospital) Shad Ahmed Wehiba Chebbo Ghada El-Gohary AbdulMannan Osama Ali Haitham Al-Mahayni Mamoun Al-Sermani Ahamd Alotaibi Ali Alahmari

HSCT Coordinators Reggie Belkhedim Fayez AbuZeid Manju Abraham Reena Ulahannan Bandar Al-Otaibi Mohammed al-Masri

