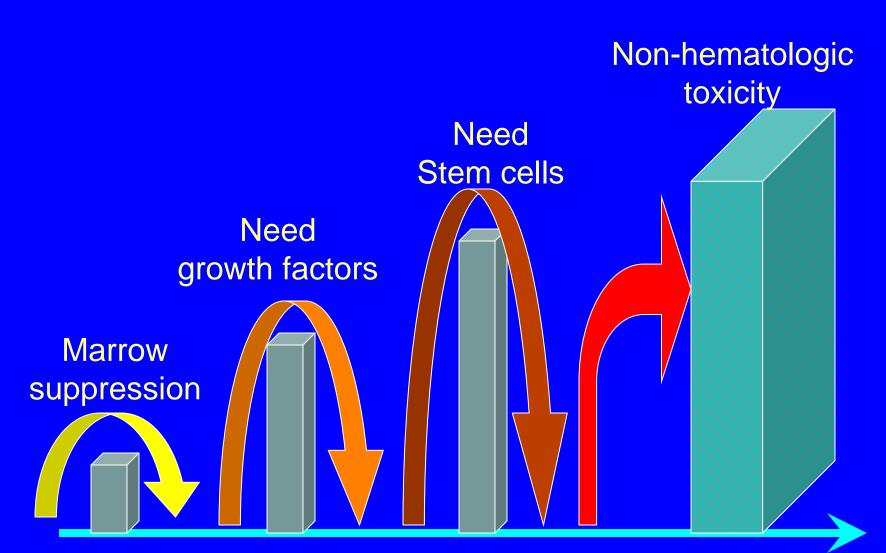
Transplantation for Leukemia: How much regimen intensity is needed?

> Daniel Weisdorf, MD University of Minnesota


> > Riyadh, 2017

Transplants for Cancer

Stem cells are Restorative

Conditioning designed for Therapeutic Index Not for leukemia efficacy

Dose Intensity for BMT

Regimen Intensity

Anti-cancer effects of BMT Kill the cancer cells

Save the patient

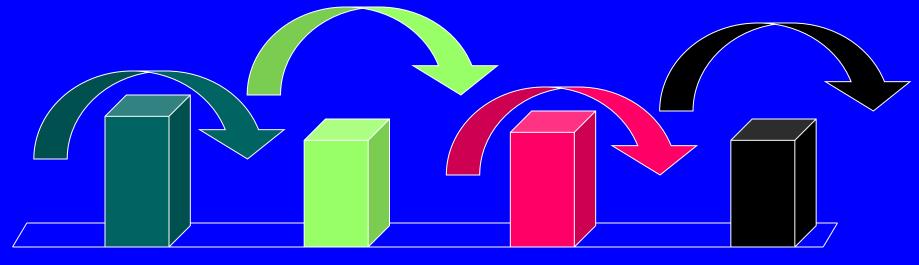
Restore immunocompetence

Prevent Infection Prevent cancer recurrence {GVL} Anti-cancer effects of BMT Kill the cancer cells

Save the patient

Restore immunocompetence

Undesired tissue toxicityUndesired enhancement of GVHD


Dose-limiting toxicities

Cyclophosphamide gut, bladder, heart

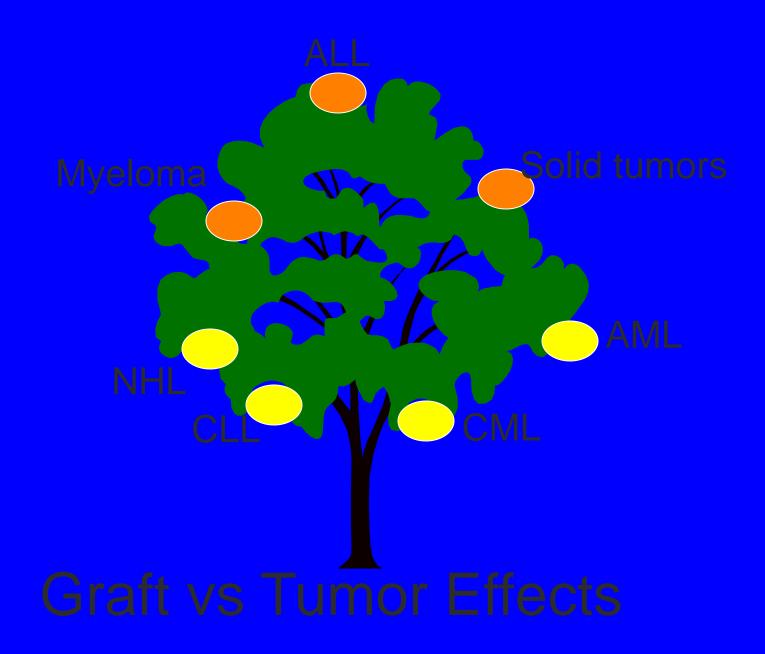
TBI mucosa, lung

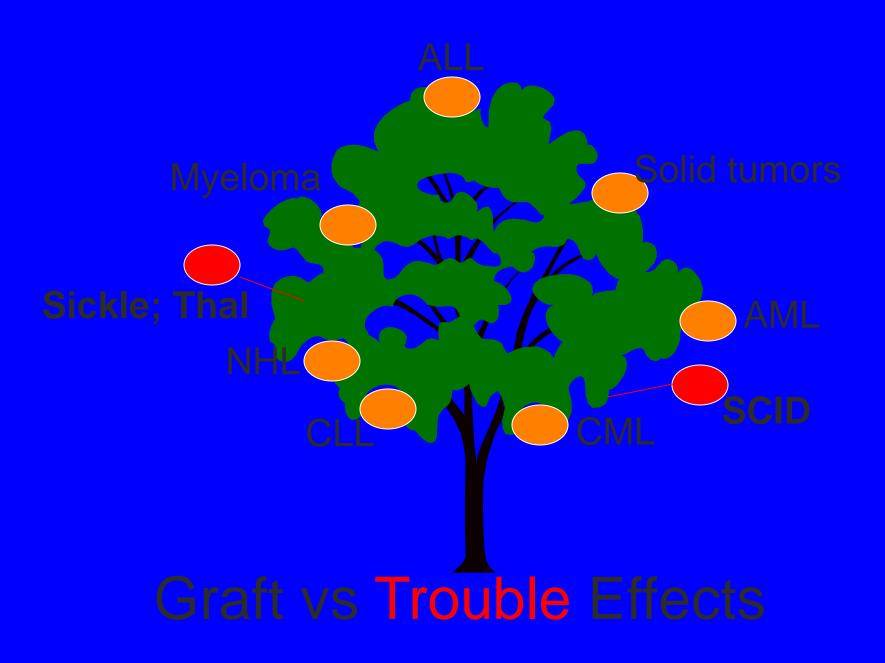
Busulfan lung, gut, liver

Barriers to Transplant Success: Conditioning Intensity influences them all

Regimen Engraftment toxicity

GVHD


Relapse

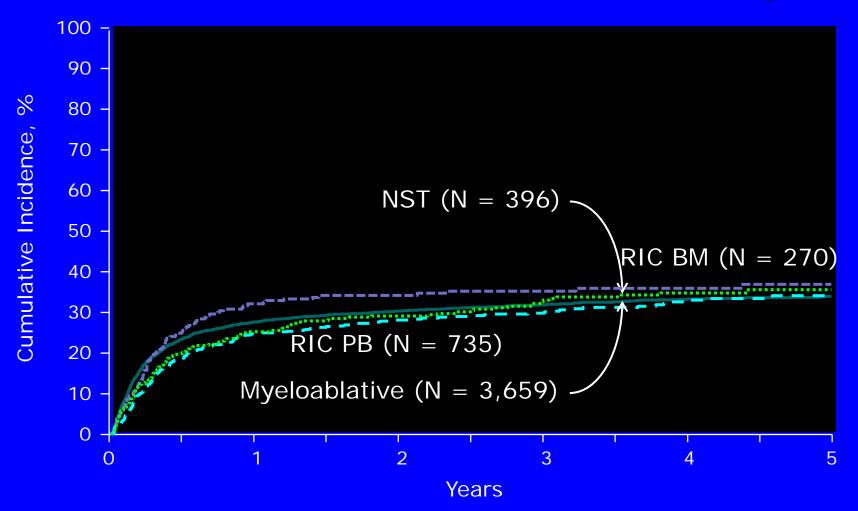

Dose-intensity may not prevent relapse

AML - beyond CR1 bad cytogenetics

ALL-most except standard risk CR2

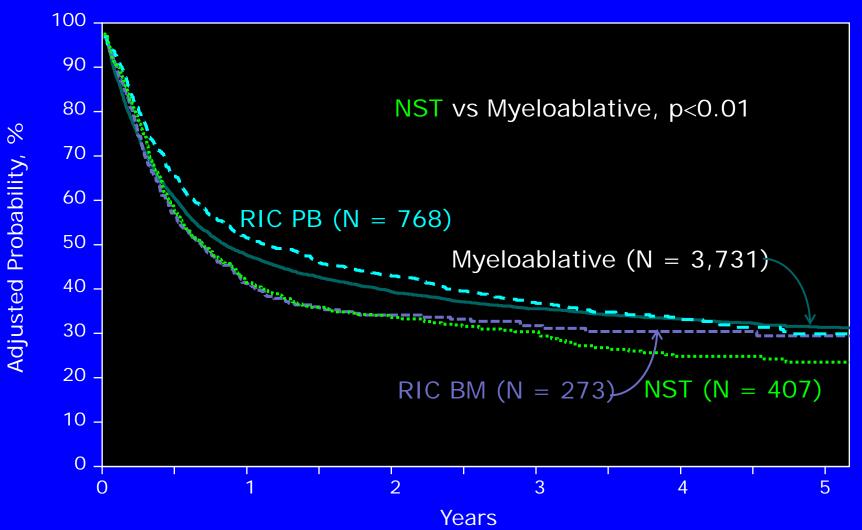
High grade NHL, Myeloma, Solid tumors

Similar Outcomes Using Myeloablative vs. Reduced Intensity and Non-Myeloablative Allogeneic Transplant Preparative Regimens for AML or MDS


> Luger, Pulsipher et al BMT, 2012

Patient Characteristics

Variable	MA	RIC	NST
Ν	3731	1041	407
Age, y	42	55	57
	(18-68)	(18-70)	(18-70)


AML/MDS 1997-2004 Sib/URD BM/PBSC

Cumulative Incidence of Treatment-Related Mortality

Relative Risk of Relapse							
Variables	N	RR (95% CI)	Ρ				
Myeloablative	3659	1.00					
RIC BM	270	1.51 (1.23-1.85)	<0.001				
RIC PB	735	1.06 (0.92-1.22)	0.44				
NST	396	1.65 (1.40-1.96)	<0.001				

Adjusted Probability of Overall Survival

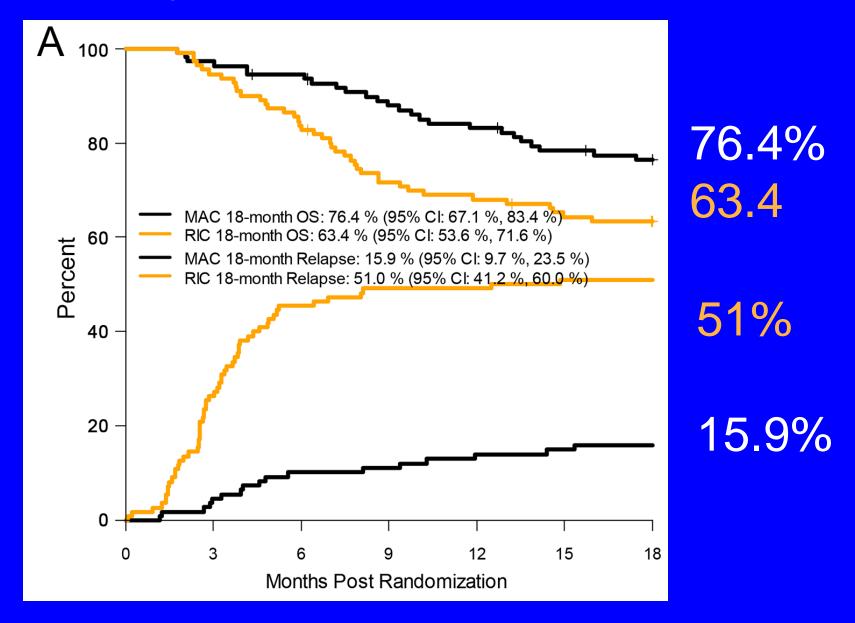
Conclusions: MA vs RIC vs NST for AML/MDS Similar rates of engraftment and acute GVHD

TRM lower for RIC early, but similar by 36 months

Equal MA and RIC relapse rates Equal 5-yr OS

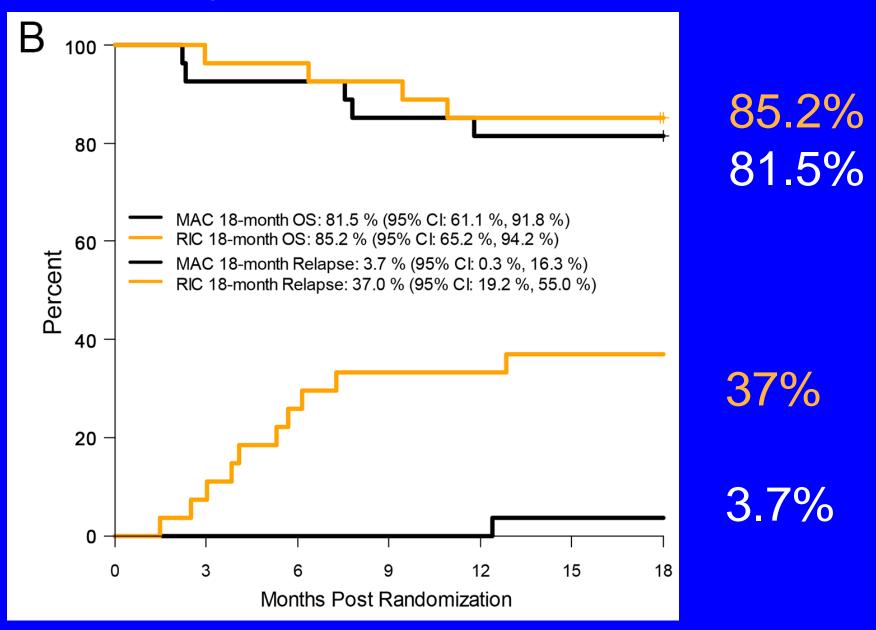
Non-ablative lower OS

Prospective Randomized Trial BMT CTN 0901 AML/MDS adults


MAC: Flu Bu2 vs BuCy vs CyTBI

RIC: Flu Bu4 vs FluMel

N=356 planned; 272 enrolled in 34 months Stopped for excess relapse with RIC


Scott et al, 2017

OS & Relapse for AML: MAC better than RIC

Scott et al, 2017

OS & Relapse for MDS: MAC = RIC

Scott et al, 2017

Relapse RIC worse than MAC for Acute Leukemia

С	RIC		MAC	-		Odds Ratio	Odds Ratio	
Study or Subgroup			Events		Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	23 trials
Two year and below								20 11/213
Flynn 2007	11	32	56	187	1.1%	1.23 [0.55, 2.71]	+	N>10000
Hemmati 2010	11	37	14	56	0.8%	1.27 [0.50, 3.21]		N>10000
Massenkeil 2005	15	25	20	50	0.6%	2.25 [0.84, 5.99]		
Mohty 2010	60	127	139	449	3.4%	2.00 [1.34, 2.98]	-	
Nishiwaki 2011	7	26	17	95	0.6%	1.69 [0.61, 4.66]	+	
Parker 2002	7	23	3	29	0.2%	3.79 [0.86, 16.81]	<u> </u>	Delense
Ringdén 2009 (≤ 50yr)	56	149	292	972	5.1%	1.40 [0.98, 2.01]	+	Relapse
Ringdén 2009 (≥ 50yr)	105	252	53	182	3.8%	1.74 [1.16, 2.61]	-	
Shimoni 2006	16	41	14	45	0.9%	1.42 [0.58, 3.45]	- 	< 2 years
Sorror et al 2007	52	125	122	452	3.2%	1.93 [1.28, 2.91]	-	
Tanaka 2013	29	206	44	369	2.8%	1.21 [0.73, 2.00]	±.	
Subtotal (95% CI)		1043		2886	22.5%	1.64 [1.39, 1.93]		P=0.00001
Total events	369		774					
Heterogeneity: Chi ² = 6.28		*		%				
Test for overall effect: Z =	5.85 (P <	0.0000	01)					
Above two year								
Aoudjhane 2005	129	315	98	407	5.3%	2.19 [1.59, 3.01]	+	
Bachanova 2013	33	67	36	130	1.3%	2.53 [1.37, 4.68]		
Bornhäuser 2012	27	99	24	96	1.9%	1.13 [0.59, 2.13]		
Graef 2007	14	23	24	97	0.4%	3.83 [1.49, 9.87]		
Khabori 2011	12	39	14	62	0.4%	1.52 [0.62, 3.76]		
Lim 2010	342	833	165	500	12.8%	1.41 [1.12, 1.78]	+	
Luger 2011	399	1005	1171	3659	32.0%	1.40 [1.21, 1.62]	-	Relapse
Marks 2010	32	93	371	1428	3.1%	1.49 [0.96, 2.33]	-	
Takasaki 2012	11	36	5	35	0.4%	2.64 [0.81, 8.62]		> 2 years
Tanaka 2013	54	206	55	369	3.1%	2.03 [1.33, 3.09]		
Terwey 2012	40	102	37	100	2.4%	1.10 [0.62, 1.94]	+	
Todisco 2013	115	191	181	324	5.6%	1.20 [0.83, 1.72]	+	
Subtotal (95% CI)		3009	101	7207	69.0%	1.51 [1.37, 1.66]	1	P=0.00001
Total events	1208		2185					
Heterogeneity: Chi ² = 19.3	34, df = 1	1 (P = 0)	0.06); I ² = 4	43%			0.005 0.1 1 10 200	
Test for overall effect: Z =							Favours RIC Favours MAC	

Abdul Wahid, 2014

PFS RIC ~worse than MAC for Acute Leukemia

а	RIC		MAG	2		Odds Ratio	Odds Ratio	
Study or Subgroup					Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
Two year and below								
Aoudjhane 2005	126	315	179	407	8.4%	0.85 [0.63, 1.14]	-+	
Flynn 2007	10	32	56	187	1.0%	1.06 [0.47, 2.39]	_ 	
Hemmati 2010	21	37	35	56	1.1%	0.79 [0.34, 1.84]		
Mohty 2010	41	127	171	449	4.6%	0.78 [0.51, 1.18]		
Nishiwaki 2011	16	26	55	95	0.8%	1.16 [0.48, 2.83]		PFS
Parker 2002	9	23	13	23	0.7%	0.49 [0.15, 1.60]		
Ringdén 2009 (≤ 50yr)	55	149	418	972	6.3%	0.78 [0.54, 1.11]		< 2 years
Ringdén 2009 (≥ 50yr)	86	252	60	182	4.1%	1.05 [0.70, 1.58]		
Shimoni 2006	18	41	20	45	1.0%	0.98 [0.42, 2.29]		
Sorror et al 2007	54	125	218	452	4.8%	0.82 [0.55, 1.22]		
Tanaka 2013	124	206	218	369	5.6%	1.05 [0.74, 1.48]	+	P=0.08
Subtotal (95% CI)		1333		3237	38.5%	0.88 [0.77, 1.01]		F=0.00
Total events	560		1443					
Heterogeneity: Chi ² = 4.3			93); l² = 0	1%				
Test for overall effect: Z =	1.77 (P =	0.08)						
Above two year								
Bachanova 2013	17	67	36	130	1.6%	0.89 [0.45, 1.74]	<u> </u>	
Bornhäuser 2012	57	99	54	96	2.1%	1.06 [0.60, 1.86]	<u> </u>	
Graef 2007	4	23	42	97	1.2%			
Luger 2011	298	1005	1207	3659	32.9%	0.86 [0.74, 1.00]	=	
Marks 2010	29	92	577	1409	4.4%	0.66 [0.42, 1.04]		PFS
Martino 2006	71	215	255	621	7.9%	0.71 [0.51, 0.98]		0
Massenkeil 2005	11	25	25	50	0.8%	0.79 [0.30, 2.06]		> 2 years
Scott 2006	10	38	49	112	1.6%	0.46 [0.20, 1.04]		
Tanaka 2013	80	206	173	369	6.8%	0.72 [0.51, 1.02]		
Terwey 2012	46	102	43	100	2.1%	1.09 [0.62, 1.90]		
Subtotal (95% CI)		1872		6643	61.5%	0.80 [0.72, 0.90]		P=0.0001
Total events	623		2461				MAC RIC	
Heterogeneity: Chi ² = 9.6	0, df = 9 (l	P = 0.3	8); l² = 69	6				
Test for overall effect: Z =	3.84 (P =	0.0001	1)				0.1 0.2 0.5 1 2 5 10 Favours MAC Favours RIC	
							Favours MAC Favours RIC	

Abdul Wahid, 2014

OS RIC = MAC for Acute Leukemia

b	RIC	:	MAG	2		Odds Ratio	Odds Ratio	
Study or Subgroup			Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
Two year and below								-
Aoudjhane 2005	148	315	187	407	7.6%	1.04 [0.78, 1.40]	+	
Flynn 2007	11	32	65	187	1.1%	0.98 [0.45, 2.16]		
Hemmati 2010	24	37	38	56	0.9%	0.87 [0.36, 2.10]		
Mohty 2010	61	127	202	449	4.1%	1.13 [0.76, 1.68]	+-	
Nishiwaki 2011	16	26	56	95	0.8%	1.11 [0.46, 2.71]	_ 	OS
Parker 2002	11	23	13	23	0.6%	0.71 [0.22, 2.25]		00
Shimoni 2006	19	41	23	45	1.0%	0.83 [0.35, 1.93]	-+-	< 2 years
Sorror et al 2007	60	125	242	452	4.8%	0.80 [0.54, 1.19]		
Tanaka 2013	138	206	240	369	5.0%	1.09 [0.76, 1.56]	+	P=0.98
Subtotal (95% CI)		932		2083	26.0%	1.00 [0.85, 1.17]		F-0.90
Total events	488		1066					
Heterogeneity: Chi ² =				= 0%				
Test for overall effect:	Z = 0.02	(P = 0.9)	98)					
Above two year								
Bachanova 2013	26	67	45	130	1.6%	1.20 [0.65, 2.20]	- 	
Bornhäuser 2012	60	99	56	96	2.0%	1.10 [0.62, 1.95]	+-	
Khabori 2011	20	39	30	62	1.0%	1.12 [0.50, 2.50]		
Lim 2010	267	833	150	500	11.2%	1.10 [0.87, 1.40]	+	
Luger 2011	343	1041	1268	3731	32.6%	0.95 [0.82, 1.10]	+	
Marks 2010	42	93	728	1428	4.3%	0.79 [0.52, 1.21]		
Martino 2006	88	215	280	621	7.5%	0.84 [0.62, 1.16]		
Massenkeil 2005	10	25	19	50	0.7%	1.09 [0.41, 2.91]	2	OS
Scott 2006	11	38	54	112	1.7%	0.44 [0.20, 0.97]		> 2 voore
Takasaki 2012	16	36	15	35	0.7%	1.07 [0.42, 2.73]		> 2 years
Tanaka 2013	109	206	188	369	5.6%	1.08 [0.77, 1.52]	+	
Terwey 2012	49	102	45	100	2.1%	1.13 [0.65, 1.96]	+-	
Todisco 2013	31	191	55	324	3.0%	0.95 [0.59, 1.53]		P=0.57
Subtotal (95% CI)		2985		7558	74.0%	0.97 [0.88, 1.07]		
Total events	1072		2933	n tagittar			MAC RIC	
Heterogeneity: Chi ² =	•			²= 0%			0.05 0.2 1 5 20	
Test for overall effect:	Z = 0.57	(P = 0.5)	57)				Favours MAC Favours RIC	

Abdul Wahid, 2014

MA vs. RIC for Adult Ph- ALL

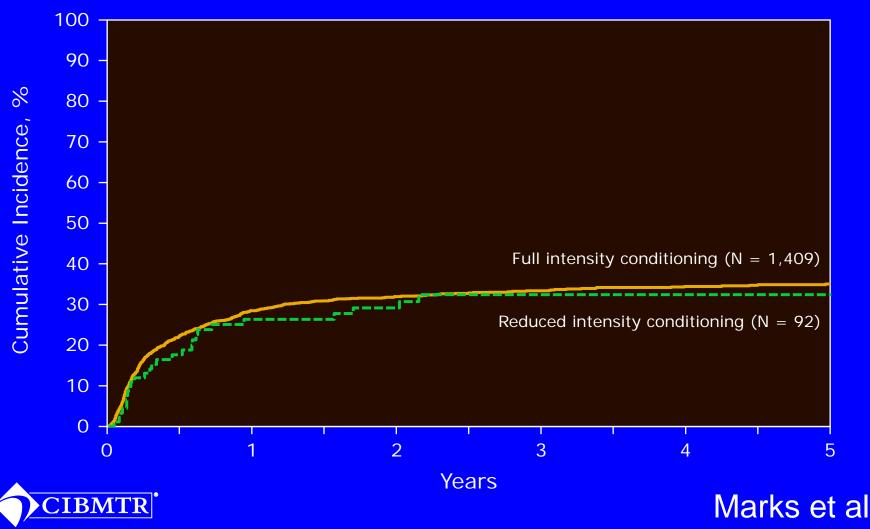
- Allogeneic HCT BM or PBSC
- HLA-identical sibling or unrelated donor 1995-2007
- Age ≥ 16 years
- CR1 or CR2

Clinical Characteristics

	RIC	MA	P-value
Number	93	1428	
Age, yr	45 (17-66)	28 (16-62)	<0.001
Age > 50 yr	43%	7%	<0.001
KPS < 80%	14%	7%	0.07
CR1	59%	52%	0.20
HLA-Id sibling	41%	32%	0.09
PBSC grafts	73%	43%	<0.001
2002-2007	73%	51%	<0.001

Marks et al

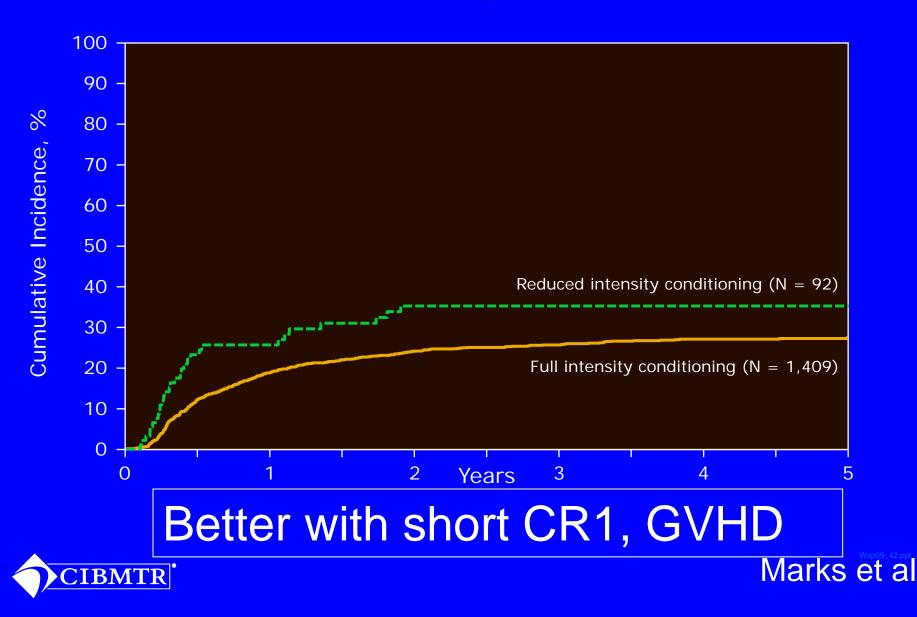
Similar Outcomes


Outcome	RIC	MA
Acute GVHD @ 100d (grades II-IV)	39%	46%
Chronic GVHD @ 3 years	34%	42%
TRM @ 3 years	32%	33%

LK08-03 09_8.ppt

Cumulative Incidence of Treatment-related Mortality

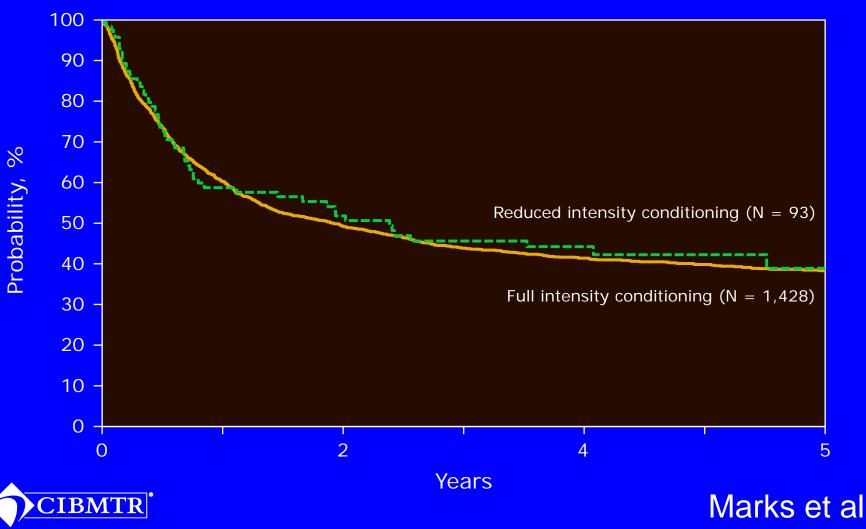
Similar Outcomes


Outcome	RIC	MA	
Acute GVHD @ 100d (grades II-IV)	39%	46%	
Chronic GVHD @ 3 years	34%	42%	
TRM @ 3 years	32%	33%	
Relapse @ 3 years	35%	26%	
Overall Survival @ 3 years	38%	43%	

_K08-03 09_8.ppt

Cumulative Incidence of Relapse

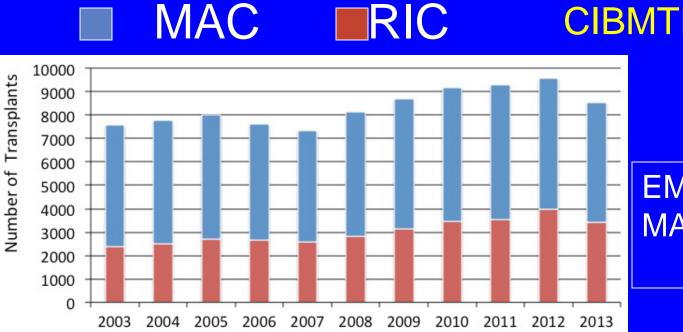
HCT for ALL CR2


	RIC	MA	P value
Relapse @ 3y	30 (17-46)	31 (28-35)	0.91
OS @ 3y	28 (14-44)	33 (30-37)	0.51

Marks et al Blood, 2010

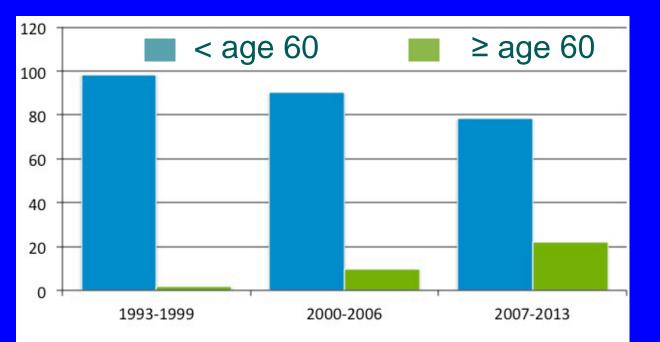
LK08-03 09_15.ppt

Equal Adjusted Probability of Overall Survival



(Source: Wsp09 25) LK08-03 09 15.ppt

Clinical implications of less toxic BMT


Less morbidity & mortality Applicable to older, sicker populations Outpatient; less costly

Useful in newer clinical settings

CIBMTR MAC:RIC Utilization

EMRO 2011-12 MAC 63%; RIC 9.5% Aljurf, 2015

Situational choices for conditioning intensity in allotransplantation

Younger

Tolerate more intense conditioning or GVHD

Resistant tumor

Need more GVL & more conditioning

Pre-BMT infections Need faster immune recovery

Modify graft & technique