STEM CELL PROCESSING METHODS AND GRAFT CHARACTERIZATION

Paul W. Eldridge

UNC Lineberger Comprehensive Cancer Center Advanced Cellular Therapeutics Facility

Chair, FACT Standards Committee

MAKING SOMETHING

Processing Manufacturing Production

CHECKING TO SEE IF YOU MADE IT CORRECTLY

Characterization Quality Control Testing Release Testing

EVOLVING ENVIRONMENT

HSCT is widely accepted and often considered as standard of care in many situations

Along with expanded access to HSCT services, public agencies and regulators are increasing oversight as part of their responsibility for consumer protection. The regulatory mechanism that many developed regions have adopted is to begin to equate cell product handling with pharmaceutical manufacturing. This trend is most likely to continue and expand into emerging regions of the world.

Cell therapy laboratories are increasingly required to put more stringent systems and validated processes into place that guide everyday procedures.

Types of Processing

- Minimally Manipulated
 - No actions required
 - Plasma Removal (Minor ABO incompatibility)
 - Red Blood Cell Removal (Major ABO incompatibility)
 - Cryopreservation and thawing
 - Cell enrichment or depletion approved devices
- Extensive manipulation ("more than minimal")
 - Cell enrichment or depletion-unapproved devices or reagents
 - Ex vivo expansion of specific subsets (e.g. CTLs)
 - Gene manipulation (e.g. "Suicide genes")

Activities Common to All Methods

Sample Removal & Testing

Cell counts & viability

Stem cell content-Flow assessment of CD34 Sterility

cultures

Archive sample storage (mostly cells to be frozen)

Labeling

Composition (Cell count, volume, additives) Storage conditions and expiration Patient identification, Unit Identifier, Collection and Processing Center identification, Warnings and precautions

Documentation

Records of all steps of product receipt, testing, processing, and infusion.

Process Validation

Regardless of the technical sophistication, all cell product handling should be done following a validated process.

One of the challenges for a new program is obtaining appropriate cell material for validation efforts before beginning work with patient cells.

Processing Examples

Cryopreservation Product Storage ABO Compatibility Management Labeling

Cryopreservation-Goals

Short term or long term storage of cellular therapy products with preservation of function Allows for:

Banking of products such as HPC, Cord Blood Storage while patients to undergo addition disease treatment or conditioning for transplant

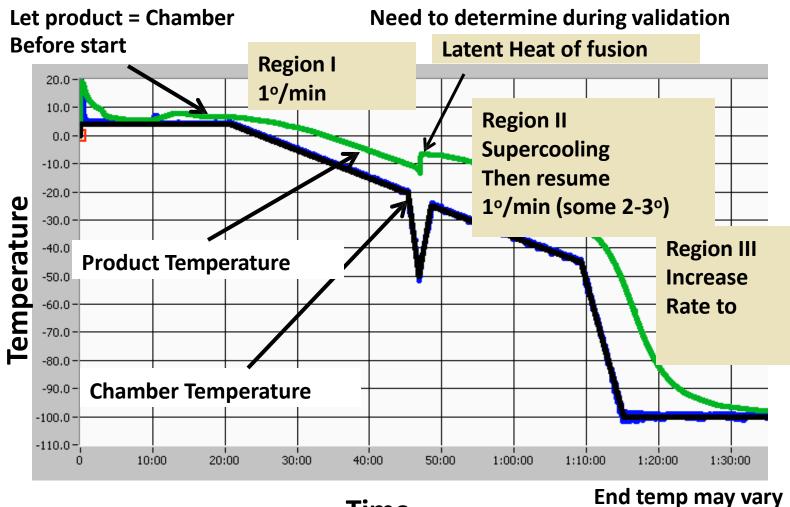
Allogeneic donors to be collected in advance of infusion (several reasons)

Storage for potential or planned future use (DLI, serial infusions, etc)

Cryopreservation- Basic Requirements

Preparation of cells for freezing

Selection and use of cryoprotectants. Mitigate freezinginduced membrane damage due to hyperosmolality, ice crystals and heat generated during the transition from liquid to solid (heat of fusion)


A controlled slow rate of freezing to allow water to leave the cytoplasm

Trigger freezing and reduce heat of fusion (good but not essential)

Storage at cold temperatures, <-80°C at minimum, Colder is better

Computer Controlled Freezing

Time

from -60 to -100

Non-Controlled Freezing ("Dump Freezing")

Advantages

No specialized equipment

Less limitations of capacity

Easier for multiple parallel processing

Disadvantages

No record of cryopreservation process

Less control of process – potential product variability effects

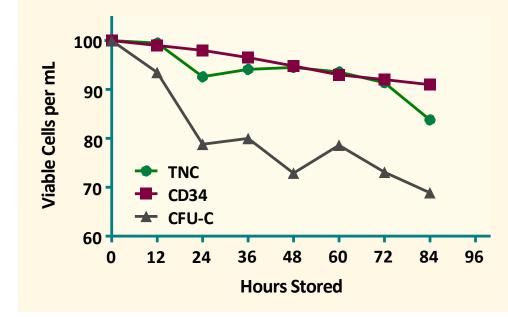
"Home made" systems require more validation efforts

Storage of Products


Liquid/Vapor nitrogen tanks Below -150 °C best for long term storage

Less susceptible to power interruptions

Mechanical Freezer

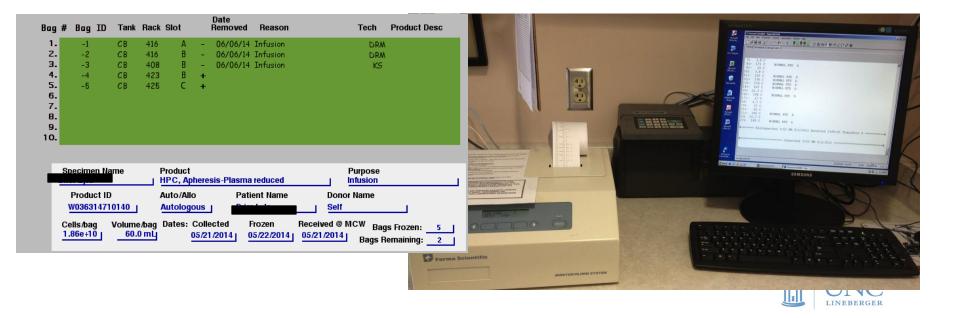

- 80°C to -150°C

Need back up power supply Both methods need back up plan with alternate storage location

Effect of Storage at 1-10°C

Overall viability and recovery of viable CD34+ cells was excellent over a 4 day storage period. However, there is a larger decline in colony forming cells in the same samples. N=3 experiments

While possible to store for autologous use expect a decline in engraftment potential.


Storage of Products

Temperature monitoring of storage location

Continuous recording or regular frequency

Alarm system to notify of abnormal temperature

Inventory system to track/locate products

Long Distance Transportation (frozen product)

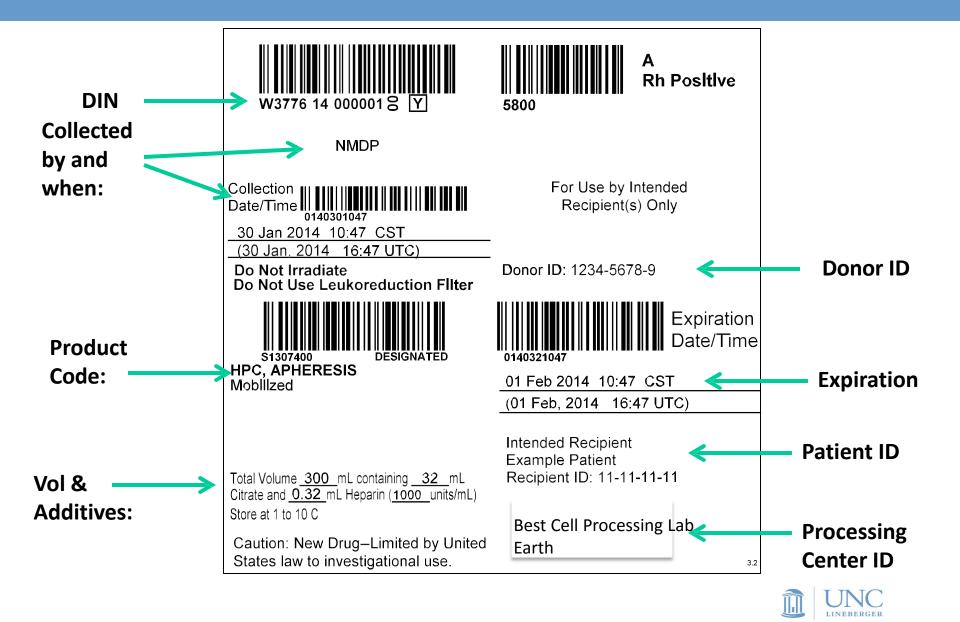
Required for cord blood from bank May also ship for transfer pt Shipped in "dry shipper" Liquid nitrogen in absorbent material Holds temperature for several days Usually shipped without courier Monitor temperature during shipment

ABO Compatibility

RBC	Plasma
ABO Type	Antibodies
Α	Anti-B
В	Anti-A
AB	None
Ο	Anti-A & Anti-B

May need to remove plasma, RBC or both. RBC limit should be established (e.g. 0.5 mL/kg.)

Red Blood Cell Removal


METHODS

Buffy Coat Centrifugation		Hct 10 – 15%		
Gel Sedimentation (Plasmagel, HES).		Hct 1-2%.		
Mononuclear Cell Preparation				
Density Gradient Method		Hct <0.5%		
Automated Centrifugation Method		Hct 1-5%		

Does not work effectively for PBPC

Labels

GRAFT CHARACTERIZATION

Identity

Cell number Viability Cell phenotype (e.g., CD34+) Safety Sterility Potency Colony assays Surrogate assays

Cell Quantification

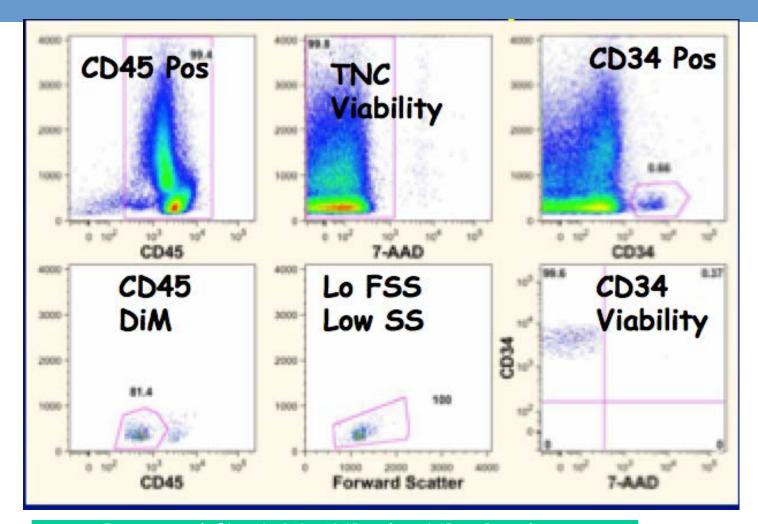
Total Nucleated Cell Counts Surrogate measure of graft quality Does not measure potency

Aspect	Manual Method	Electronic Method
Red Blood Cells	Manual Lyse, or Distinguish	Lysed automatically
Accuracy	Fewer events but better for marrow	More events but may ct marrow fat
Precision	Less (more manual steps)	More
Cost	Less	More (could share)
Subjectivity	More	Less

Viability Determination

Dye Exclusion Assays- Taken up by dead cells, excluded by cells with intact membranes

Light or phase contrast Microscope


- Trypan Blue-Most common in HPC laboratories
- Erythrosin B
- **Fluorescent Microscope**
 - Acridine Orange with Propidium Iodide-Detects living and dead cells with two dyes

Flow Cytometry Based Assays

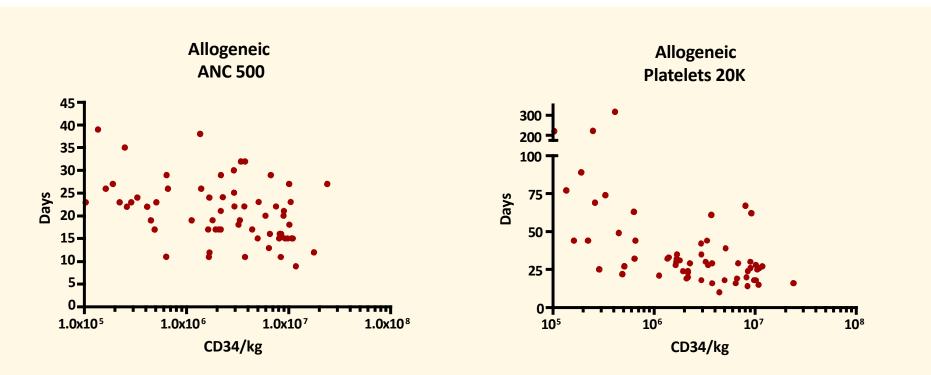
- 7-amino-actinomycin D (7-AAD)- Most common
- Propidium Iodide (PI)

CD34+ Cell Analysis

Expected % CD34+ HPC by HPC Product

Allo-HPC(M)	Allo-HPC(CB)	Allo-HPC(A)
1.0%±0.33%	0.93%±0.44%	0.85%±0.46%

Target Infusion Cell Dose


Non Manipulated HPC Products

	<u>Nuc Cells/kg</u>	<u>CD34/kg</u>
Allo Marrow	2-4 x 10 ⁸	2-4 x 10 ⁶
Auto Marrow	1-2 x 10 ⁸	1-2 x 10 ⁶
PBSC *	2-10 x 10 ⁸	2-5 x 10 ⁶
Cord Blood**	>4 x 10 ⁷	>0.5 x 10⁵

*Cell dose varies widely depending upon mobilization **Required doses likely attainable only for Pediatric recipients

CD34 Dose

Day of engraftment versus CD34 dose per kg. Allogeneic patients.

Resources

Professional Organizations

WBMT (WBMT.org) AHCTA (ahcta.org) ISCT (celltherapysociety.org) AABB (aabb,org)

Published methods (Books, manuals, and scientific papers) Accrediting organizations

FACT

JACIE

AABB

Peer Communication

Small Labs Group (Google Discussion Group) (groups.google.com/forum/?hl=en#!forum/small-cell-therapylab)

Thank you

