Transplantation for Myeloma

PARAMESWARAN HARI Medical College of Wisconsin Plasma Cell Disorders Working Committee CIBMTR

Survival after Auto transplant for Myeloma, 2003-2013

Transplant for MM: Is it still needed? If so, when... (still upfront or ok to wait)?

Newer drugs : Carfilzomib Pomalidomide Elotuzumab Daratumumab Panabinostat

Phase 3 MPR Consolidation vs Tandem MEL200

Palumbo, et al. N Engl J Med. 2014;371:895-905.

High-dose Melphalan - ASCT vs Chemotherapy

Gay, et al. Lancet Oncol. 2015;16:1617-1629.

Determination Trial—Phase III IFM/DFCI

Role of Early vs Delayed Transplant in the Era of Novel Agents

- Primary objective: PFS
- Secondary objectives: ORR, MRD, TTP, OS, Safety

*VRD: bortezomib 1.3 mg/m² IV on Days 1, 4, 8, 11 + lenalidomide 25 mg on Days 1-14 + dexamethasone 20 mg on Days 1, 2, 4, 5, 8, 9, 11, 12. ** till POD in US trial and 12 months in IFM trial [†]Included PBSC collection with cyclophosphamide 3 g/m² + G-CSF after cycle 3.

EMN02/H095 ASCT vs VMP After CyBorD Induction

Cavo M, et al. J Clin Oncol. 2016;34(suppl). Abstract 8000.

New drug vs. Auto-Transplant Studies

Group	Νο	Induction	Comparator	> VGPR	PFS	OS
GIMEMA NEJM 2014	402	RD x4	MPR x6 ASCT x2	63 59	22mo median 43mo [*]	65% 4y 81% [*]
MultiCenter Lancet Oncol 2015	389	RD x4	CDR x6 ASCT x2	50 54	29mo 43mo ^{*}	68% 4y 77% *
IFM 2009 ASH 2015	700	VRD x3	VRD x5 ASCT + VRD x2	78 88*	34mo 43mo ^{*}	83% 4y 81%
EMN ASH 2016	1192	VCD x3-4	VMP x4 ASCT 1 or 2	74 85*	57% @ 3 yrs 65% HR 0.73 [*]	NS (short fu)

EMN02/HO95 Results

PFS from first randomization – ASCT vs VMP

	Study Population		High Risk	
	ASCT n=695	VMP n=497	ASCT n=133	VMP n=87
PFS, months	NR	42.5	42.3	20.3
3-year PFS Rate	65%	57.1%	52.4%	29.5%
HR (95% CI) <i>P</i> value	0.73 (0.61-0.88) .001		0.53 (0.37-0.76) .001	

Median follow-up 25 months.

- Patients with high-risk cytogenetics derived the most significant benefit
- Adverse events included GI concerns and mucositis

ASCT improves PFS over high dose therapy for MM patients

Cavo M, et al. *Blood.* 2016;128. Abstract 673.

IFM/DFCI—PFS According to MRD (FCM) Post Consolidation

VRD Arm

Transplant Arm

Beyond Auto Transplantation for Myeloma

Approaches to prevent relapse

CONSOLIDATION

MAINTENANCE

ALLOTRANSPLANT & IMMUNE THERAPY

BMT CTN 0702 STAMINA Study

*Induction therapy was not specified. Patients must have had \geq 2 cycles of systemic therapy, within 2-12 mos of therapy initiation and Available autograft \geq 4 × 10⁶ CD34+ cell/kg.

Median follow-up: 37.8 mos

MEDICAL COLLEGE OF WISCONSIN

ClinicalTrials.gov. NCT01109004.

Stamina Study Results

No significant difference between the study arms

Post induction + ASCT-1 followed by:	R Maint only n=257	RVD → R n=254	Double ASCT→R n=247
Median PFS, mos	52.2	56.7	56.5
Median OS, mos	83.4	85.7	82.0
High-risk patients, n	59	65	57
Median PFS, mos	40.2	48.3	42.2
Median OS, mos	79.5	77.5	79.3
Post induction + ASCT-1 followed by:	R Maint only n=257	RVD→R n=254	Double ASCT→R n=247
Second malignancies, n	10	15	14
Cumulative incidence, %	4.0	6.0	5.9 MEDI

ClinicalTrials.gov. NCT01109004.

EMN02/H095 ASCT vs VMP After CyBorD Induction

Cavo M, et al. J Clin Oncol. 2016;34(suppl). Abstract 8000.

EMN02/HO95 Consolidation

- PFS from second randomization (R2) consolidation with VRD vs no consolidation
 - 3-year PFS from R2 = 62%
 - 65% VRD vs 60% without consolidation
 - Median PFS not reached
 - Prolonged PFS after adjustment for R1 with an HR=0.78; P=.13
- 3-year OS 86% vs 87%
- PFS benefit in subgroups

Consolidation improves PFS for most subgroups, but there was no benefit for high risk patients

Sonneveld P, et al. Blood. 2016;128. Abstract 242.

Subgroup	HR,	P value
R-ISS stage III	.67	.26
VMP at R1	.76	.19
HDM at R1	.79	.13
Low-risk cytogenetics	.68	.03
High-risk cytogenetics	1.03	33
		MEDICA COLLEG

Bortezomib, melphalan, and prednisone (VMP) (4 cycles) n=199 Patients with high-risk cytogenetics benefit most from double ASCT

Cavo M, et al. *Blood.* 2016;128. Abstract 991.

STaMINA and EMN02/H095 *Differences*

- Pre-transplant induction regimen differences
 - Patients in the European study received bortezomib, cyclophosphamide, Dex
 - Most patients on the CTN study received RVD induction

Post induction + ASCT- 1 followed by:	R Maint only n=257	RVD→R n=254	Double ASCT→R n=247
Initial Therapy			
RVD, %	57.1	52.8	55.6
CyBorD, %	13.4	13.8	15.6
Rd, %	9.7	11	8.6
Vd, %	11.3	12.6	12.5
Other, %	8.5	9.8	7.8

Longer term follow-up needed

What should be the standard of care?

- Proteasome Inhibitor + IMID + Steroid induction
- Single auto transplant
- Lenalidomide Maintenance
 - Who should no maintenance? Bortezomib ? For how long?

For patients not in CR after 4 cycles of initial therapy, further induction should be attempted to induce VGPR or CR pre transplant

True or False?

"Improving the Modern Triple Sequence" Induction AutoHCT and Mainte Are all Relapses the

same?

- Randomized trials Achievement of VGPR/CR or better
- Emerging data NGS / PET / Flow based deep remissions

KRd Induction and Consolidation

• Efficacy	Response after		
 Median PFS not reached 	Consolidation	n/N	%
 2-year PFS 91% 	sCR	26/46	57
 78% VGPR at ASCT 70% MRD negative after 	sCR + CR	28/46	61
consolidation	MRD - CMF	32/46	70
• Safety	MRD - NGS	23/34	68

17% cardiac and vascular AE

KRd induction and consolidation is effective; cardiac toxicity is a concern

Transplant is the most cost effective therapy in MM

- KRD or VRD in the USA :
 - Approximate monthly cost 30-50 000 USD/mo
 - Addition of Daratumumab 12-23 000 USD more
 - Recurring nature of the cost
 - Limitation of Time without treatment

Multiclonal disease with clonal heterogeneity

Morgan et al Nat Rev Cancer. 2012 Apr 12

Immunotherapy after AutoHCT

- Minimal TRM
- Immune effect without GVHD

Immune therapy is ideal for post AUTO HCT SETTING

- Minimal residual disease state
- Elimination of competing and suppressor cells
- Tumor antigen release from high dose chemotherapy
- Favorable cytokine milieu

Adoptive Cellular Therapy

- Autologous marrow derived myeloma Infiltrating Lymphocytes
- NK cell therapies (from donors or expanded third party)
- Re-engineered T cells
- Vaccines BMT CTN 1401 study

Third-generation chimeric

Antigenic targets for CAR – T cells :

BCMA – B cell Maturation Antigen NY ESO -1 / LAGE SLAM F7 CD 56 NKG2L Kappa Light Chain CD19 / CD38 / CD70 / CD138

> MEDICAL COLLEGE OF WISCONSIN

Rotolo A et al; Br. Journal of Haem. 2016;173: 350

PD-1 inhibition after Auto

- Effects of anti-PD-1 on T- and NK-cell function
- Correlation of immune cell phenotypes in the autologous graft and outcomes

To Cryopreserve or Not?

- Is it worth investing in cryopreservation?
 - IMO resounding YES!
 - Recover initial outlay in first transplant
 - Annual Cost 150 200 USD / year
 - Use cells at relapse in eligible patients

- Reinduction / Transplant / Diff Maintenance

Multiply relapsed pts – cells to recover counts

Second Salvage Transplants

- Freeze additional cells vs. Re-mobilize
 - What you gain in storage costs will lose in Plerixafor
- Second transplant at relapse may be better than tandem upfront in the modern era
- IMWG consensus recommends salvage second transplant if PFS from first transplant is >18 mo

Early Relapse After Auto HCT – is a high risk group

Center for International Blood and Marrow Transplant Research

How many pts relapse early?

Attal M et al Blood 2015 126:391

Why not give up Allotransplant?

Bjorkstrand JCO 2011; 29: 3016 -22

- Intriguing European studies
- Longer follow up for a difference to show
- Young high risk pt what to do?
- Low TRM ~5% in the best centers
- Allo \rightarrow Maintenance paradigm
- Backing off from "Mini" regimens

Pay attention to Melphalan MEL Pharmacokinetics

- Inter-individual variability
 - Creatinine Clearance
 - Fat free mass
 - Hematocrit
- Higher MEL exposure—increased toxicity and efficacy
- Unbound MEL—sensitive predictor of toxicity and efficacy
- How do we optimize conditioning?

Nath, et al. Br J Clin Pharmacol. 2010;69:484-497.

Autologous HCT for multiple myeloma in US and Canada within 12 months from diagnosis from 1995 to 2010 registered with CIBMTR

Characteristics of	1995-1999	2000-2004	2005-2010	P-value
patients				
Registered patients	2226	6408	11644	
Number of centers	189	195	174	
Median Age	54 (19-77)	57 (22-80)	58 (18-89)	
18-50 years	734 (33)	1445 (23)	2079 (18)	< 0.001
50-65 years	1330 (60)	3875 (61)	6945 (60)	
65-80 years	162 (7)	1088 (17)	2620 (23)	

How old is too old?

What We Know and Don't Know

- New drugs improve induction CRs → higher CRs after ASCT
 - Beyond VRD which drug combinations are optimal for pts proceeding to transplantation?
- Do higher response rates observed after novel drug combinations plus ASCT improve survival?
- If a pt achieves MRD neg CR after induction therapy is transplantation optional? Which MRD technique?

Myeloma is still incurable: IMWG analysis of double refractory

Milwaukee

