

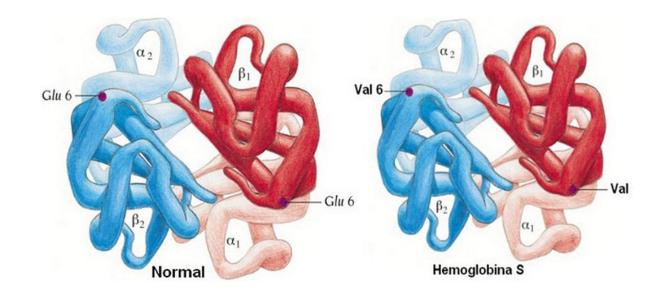
worldwide network for blood and marrow transplantation

www.wbmt.org

3RD WORKSHOP OF THE WBMT

14-15th November 2014 Cape Town - South Africa

Belinda Simões University of São Paulo Brazil


BONE MARROW TRANSPLANT IN HEMOGLOBINOPATHIES

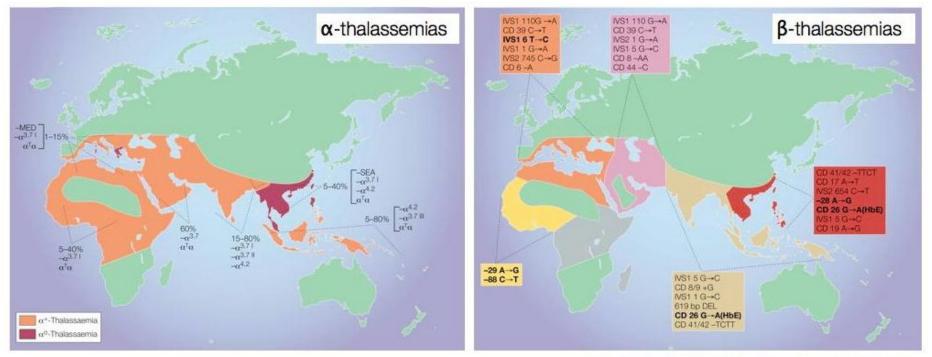
National Network for Blood and Marrow Transplatatation

SRD WORKSHOP OF THE WBMT

- Normal hemoglobines
 - 2 α and 2 β = Hb A
 - 2 α and 2 δ = Hb A2
 - 2 α and 2 γ = HbF

In sickle cell there is a point mutation on beta chain (beta S or hemoglobine S).

٠


- Thalassemia
 - Inherited disease requiring chronic long-life transfusions to treat the anemia caused by enhanced red blood cell destruction.
 - Major complication is a progressive iron overload and consequent organ deterioration.
 - Regular iron chelation by parenteral and oral chelators
 - Blood born infections

Thalassemias


Worldwide distribution of α - and β -thalassemias

Weatherall DJ Nat Rev Genetics 2:245, 2001

Thalassemia Major

- First allogeneic BM transplant more than 30 years ago
- BMT standart clinical practice
- In Pesaro more than 1000 patients were transplanted in the 80s and 90s
 - After 20 years of follow up thalassemia free survival was reported as 73% in 900 unselected patients transplanted from an HLAidentical sibling donor.
- More recently even better results
 - modern transplantation approaches
 - careful patient selection
- Survival without transplantation has also improved
 - Survival into the fourth or fifth decade of life is now possible for well-treated patients

BMT in Thalassemia major

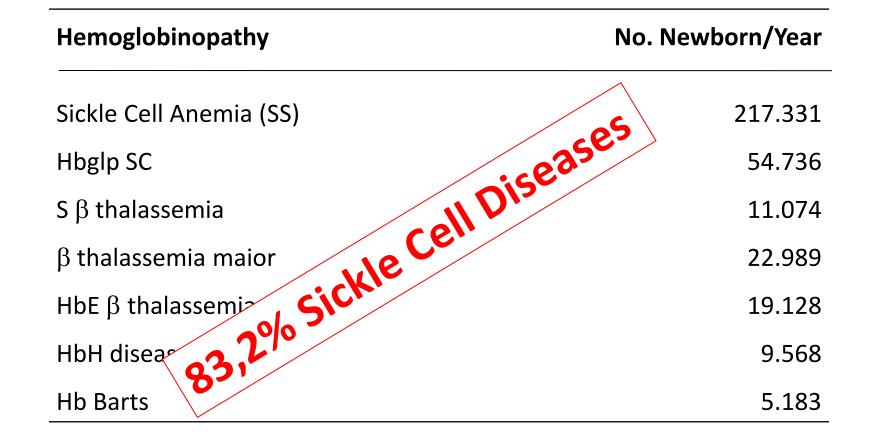
- EBMT survey on 1061 TM patients
 - Donor matched sibling
 - Overall survival (OS) 91±0.01 months
 - Disease-free survival (DFS) 83±0.01 months
 - Age threshold of 14 years for optimal results
 - 96% vs. 82% for OS
 - 86% vs. 74% for DFS

Pesaro risk classification is based on

liver size by physical examination, fibrosis detected on liver biopsy, and chelation history

BMT in Thalassemia major

- For whom?
 - All transfusion dependent patients
- Which graft source?
 - HLA identical sibling BM (avoid PBSC)
 - Related cord blood ($> 3.5 \times 10^7$ /kg)
- When?
 - As soon as possible
 - Results better in Pesaro class 1 and 2
 - With less than 14 years



Hemoglobinopathy	No. Newborn/Year
Sickle Cell Anemia (SS)	217.331
Hbglp SC	54.736
S β thalassemia	11.074
eta thalassemia maior	22.989
HbE β thalassemia	19.128
HbH disease	9.568
Hb Barts	5.183

Weatherhall DJ Blood 2010 Modell B, Darlison M. Bull World Health Organ. 2008

Weatherhall DJ Blood 2010 Modell B, Darlison M. Bull World Health Organ. 2008

- Sickle Cell Disease
 - Inherited disease caused by a point mutation
 - Variable phenotype depending of the haplotype and partner gene
 - SS
 - SC
 - S thalassemia
 - Most severe forms SS and $\text{S}\beta^{0}$
 - No severity predictors

Clinical Course

Children

Infections Sepsis Splenic Sequestration Ischemic Stroke Dactilitys

ACS Chronic hemolysis Immunesupression Stroke Gallstones Avascular Necrosis Leg Ulcers *Priapism* Late sexual development

Adults

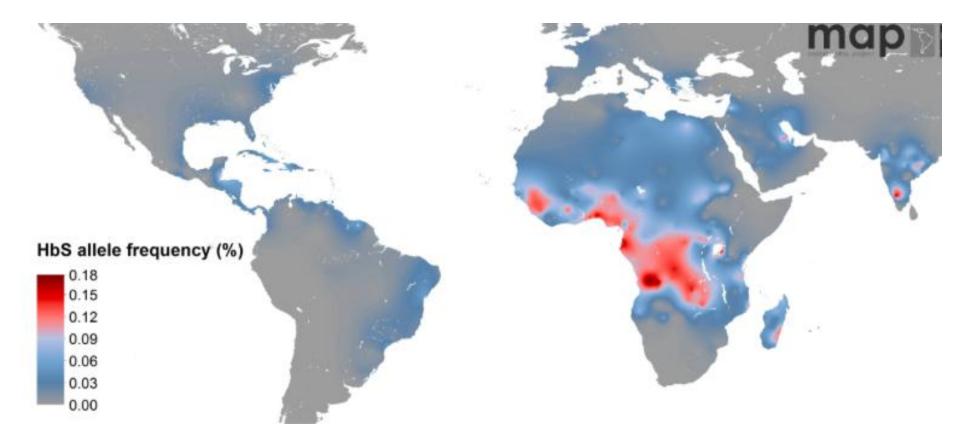
Cardiomiopathy Cardiac Insuficiency Retinopathy Pulmonary hypertension Liver sequestration Iron overload Renal Insuficiency Bone necrosis

Genotype	Genes involved	Typical	% hemoglobin/ total Hemoglobine in a				
		severity	typical patient				
			HbS	HbA	HbF	HbC	HbA2
HbAA	β e β	Normal	-	96	2	-	2
HbSS	$\beta^{S} e \beta^{S}$	Severe	95	-	3	-	2
HbSC	$\beta^{s} e \beta^{c}$	Not severe	48	-	3	47	2
HbSb ⁰	$\beta^{S} \in \beta^{0}$ talassemia	Severe	93	-	2	-	5
HbSb ⁺	$\beta^{S} \in \beta^{+}$ talassemia ¹	Moderate	85	6	5	-	4
HbSb⁺	$\beta^{S} \in \beta^{+}$ talassemia ²	Not severe	70	23	3	-	4

¹mutation that causes severe thalassemia ²mutacao that causes not severe thalassemia

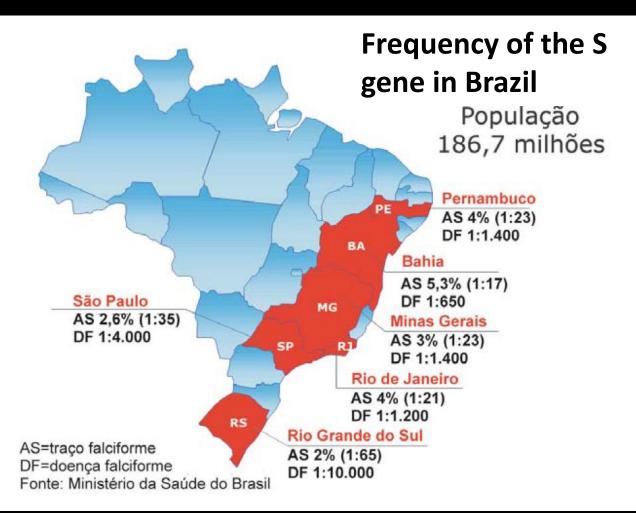
Frenette & Atweh, JCI 2007

Genotype	Genes involved	Typical severity	% hemoglobin/ total Hemoglobine in a typical patient				
			HbS	HbA	HbF	НЬС	HbA2
HbAA	β e β	Normal	-	96	2	-	2
HbSS	$\beta^{S} e \beta^{S}$	Severe	95	-	3	-	2
HbSC	β ^s e β ^C	Not severe	48	-	3	47	2
HbSb⁰	$\beta^{S} \in \beta^{0}$ talassemia	Severe	93	-	2	-	5
HbSb ⁺	β ^s e β⁺ talassemia [†]	Moderate	85	6	5	-	4
HbSb⁺	$\beta^{S} \in \beta^{+}$ talassemia ²	Not severe	70	23	3	-	4

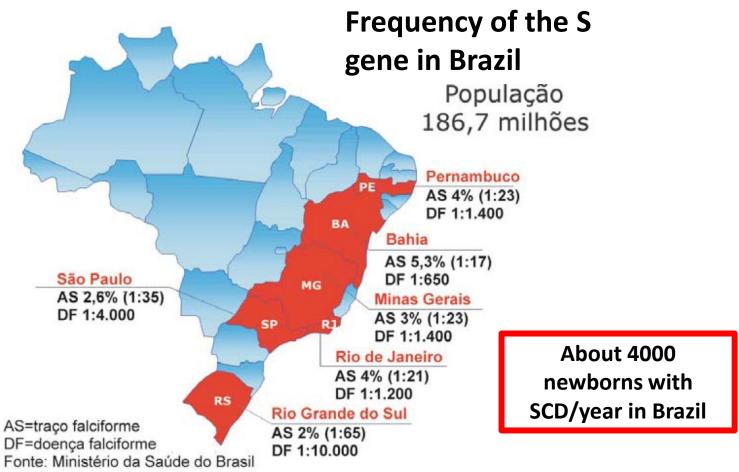

¹mutation that causes severe thalassemia ²mutacao that causes not severe thalassemia

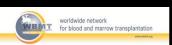
Frenette & Atweh, JCI 2007

HbS allele frequency

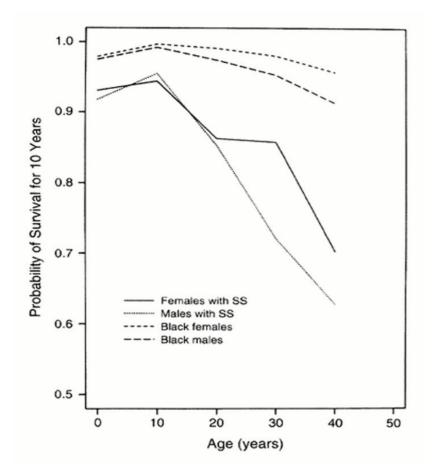


S gene in Brazil





S gene in Brazil



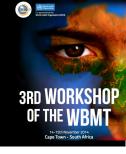
Survival in SCD

- Survival of affected afrodescendents are shortened in 25 to 30 years when compared to non affected group
- First case of SCT in a patient with acute leukemia and SCD

0

3RD WORKSHOP

14-15th November 201 Cape Town - South Afr


Bone Marrow Transplant for SCD


- In the 90s first results from Europe and USA
- More than 80% long term disease free survival and >90% overall survival with transplant from HLA identical siblings
- Related cord bloods similar results

Bone Marrow Transplant for SCD USA and EUROPA

Transplants for SCD	EBMT- Eurocord (1986- 2013)	CIBMTR (1986- 2012)
Total	611	627
Type of donor		
HLA-identical	487	430
CB related and unrelated	73	71
Haploidentical donor	34	61
Other unrelated donor	17	65
Overall survival		
1 year	95±1%	96±2%
2 years	94±1%	94±1%

Data kindly provided by prof. Eliane Gluckman

Indications for BMT in SCD

Stroke or central nervous system event lasting longer than 24 h, acute chest syndrome with recurrent hospitalizations or previous exchange transfusions

Recurrent vaso-occlusive pain (more than 2 episodes per year over several years) or recurrent priapism

Impaired neuropsychological function with abnormal cerebral MRI scan

Stage I or II sickle lung disease

Sickle nephropathy (moderate or severe proteinuria or a glomerular filtration rate 30 to 50% of the predicted normal value)

Bilateral proliferative retinopathy with major visual impairment in at least one eye

Osteonecrosis of multiple joints

Red-cell alloimmunization during long-term transfusion therapy

Suggested by Walters et al and the EBMT

Angelucci et al. Haematologica 2014

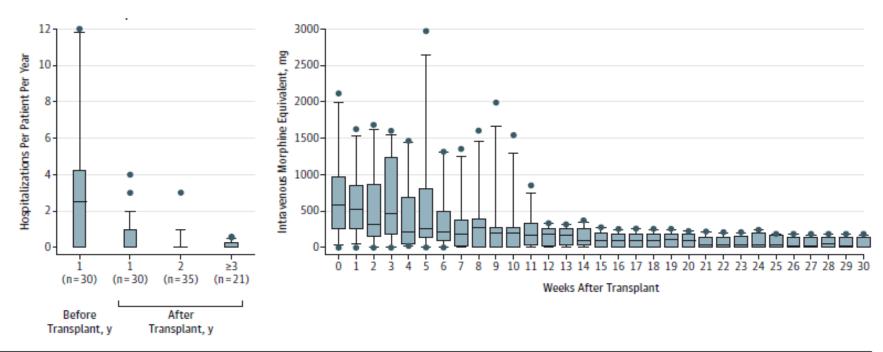
Indications for SCT in SCD

Brazilian Protocol

Organ	One of the findings
Age	No limit
Vasoclusive crisis	 a. Two ACSD in the last 2 years b. 2 9 episods of severe pain crisis per year in the last 2 years
CNS	 a. Neurologic event (stroke or neurologic deficit that last for > 24 hours) b. Neurologic sign or symptom c. TCD > 200 cm/seg (2x)
Organ damage	 a. Pneumopathy b. Pulmonary Hypertension c. Reduced kidney function d. Osteonecrosis in more than one articulation e. Retinopathy
Alloimunization	2 antibodies in patients in regular transfusion program
Hydrea	Reduction < 50% of algic crisis under HU treatment or intolerance to HU

Indications for SCT in SCD

Brazilian Protocol



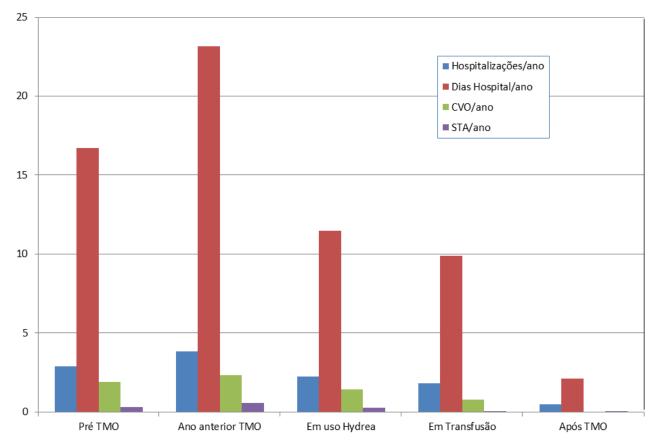
Organ	One of the findings
Age	No limit
Vasoclusive crisis	 a. Two ACSD in the last 2 years b. <a>2 3 episods of severe pain crisis per year in the last 2 years
CNS	a. Neurologic event (stroke or neurologic deficit that last for > 24
ONLY HLA	A IDENTICAL SIBLINGS
Orga OR REL	ATED CORD BLOOD
	 d. Osteonecrosis in more than one articulation e. Retinopathy
Alloimunization	2 antibodies in patients in regular transfusion program
Hydrea	Reduction < 50% of algic crisis under HU treatment or intolerance to HU

Outcome after BMT

Hospitalization rate

Narcotic use

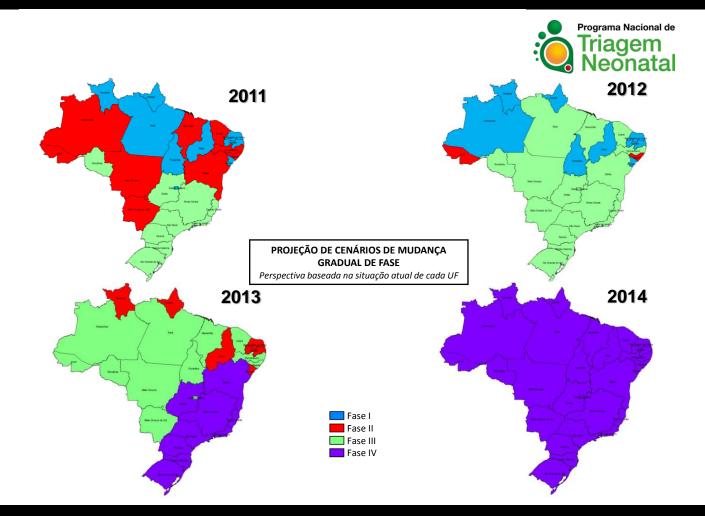
A, Median hospital admission rate per patient a year before, 1 year after, 2 years after HSCT, and 3 years after Hematopoietic Stem Cell transplantation (HSCT) and later per year. B, Among 11 participants who took narcotics long-term, median intravenous morphine equivalent doses of narcotics per week are


shown with respect to time after HSCT. The boxes refer to 25th and 75th percentile; the whiskers, 10th and 90th percentile; and the dots, values outside the 10th and 90th percentile.

JAMA. 2014;312(1):48-56.

Outcome after BMT

N = 114 pacientes

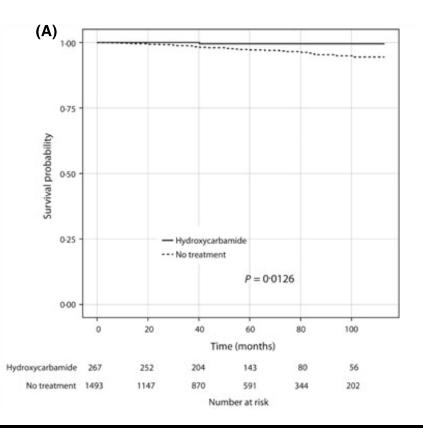


Situation in Brazil

- Few thalassemia major patients
 - Less than 800 probably
- Sickle Cell very frequent
 - About 4000 new cases per year
 - Already about 40.000 50.000 cases

Newborn screening programm

Public SCD Programm in Brazil


- 2005 First public regulation for SCD
- 2009 oral iron chelator approved
- 2010 first public Hydrea programm
- 2011 specific hydroxicarbamide and oral chelator programm for SCD
- 2013 Hb electrophoresis included as routine in pregnant women
- 2013 Transcranial Doppler reimbursed
- 2014 BMT for SCD officially indicated in patients with defined criterias

Hydroxicarbamide in SCD Brazil

- Control Group
 - N = 1493 ptsMed Age 7 years
- Treated Group
 - N = 267
 - Med Age 5,5 years

Hydroxycarbamide vs support

Lobo CL et al, Brit Journal Haematol 2013

SCT for SCD in Brazil

SRD WORKSHOP of the WBMT UNITED THE UNITED T

- N = 34 patients (35 transplants)
 - 21 patients transplanted in one center
 - 3 new patients short follow up
 - 13 patients transplanted in other 6 centers
- Alive
 - 20 (21) cases
 - 7 (13) cases*

Transplantation in SCD Problems before transplant

- Heavily transfused patients
 - Antibodies
 - Iron overload
- Comorbidities
 - Stroke
 - Pulmonary dysfunction
 - Hepatic dysfunction
- Predicitve factors of severity

Transplantation in SCD Problems after transplant....

- Acute and chronic toxicity of chemotherapy
 - Mucositis
 - Infections
 - Fertility
 - Second neoplasia
- Immunesupression
- Graft versus Host diseases

BMT for SCD In Ribeirão Preto

- N= 21 patients
 - (22 transplants)
- Median Age 18 years (8-39 years)
- Median Follow up 2 years
- Overall Survival
 - 20 patients alive
 - 1 death 1 year after 2. BMT and 3,8 years after 1.
 - Hemorrhagic stroke Moya-Moya prévio before BMT

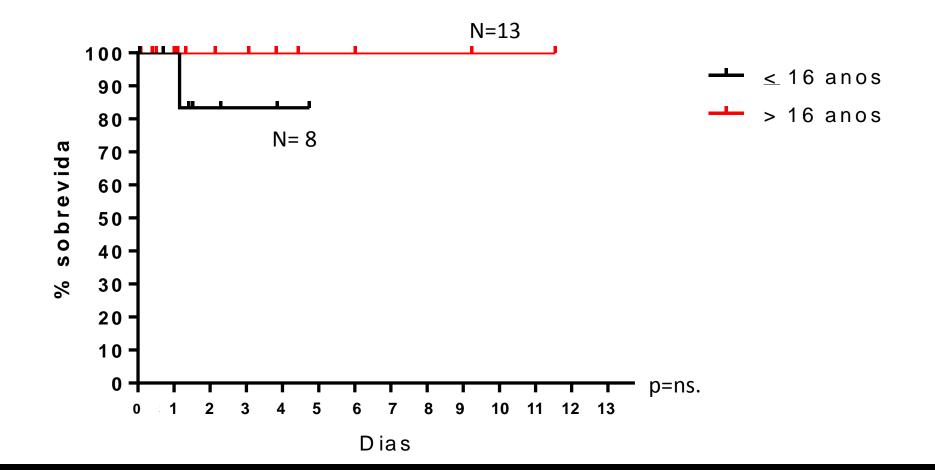
BMT for SCD In Ribeirão Preto

- Indications
 - Priapism
 - Stroke
 - Altered Transcranial doppler
 - Repeted acute chest syndromes
 - Severe leg ulcers

BMT for SCD In Ribeirão Preto

- GVHDa
 - 5 cases grade II
- GVHDc
 - None of our patients until today

 * obs: all patients were carefully evaluated and prepared for transplant! None of them were transplanted less than 6 months after first apointmet!! HbS < 30%, Hydrea until initiated conditioning, anticonvulsivants as long as they take CsA, platelets between 50.000, Hb between 9,0 and 10,0 g/dL


Overall Survival N=21 93% survival 1 death sobrevida %

e

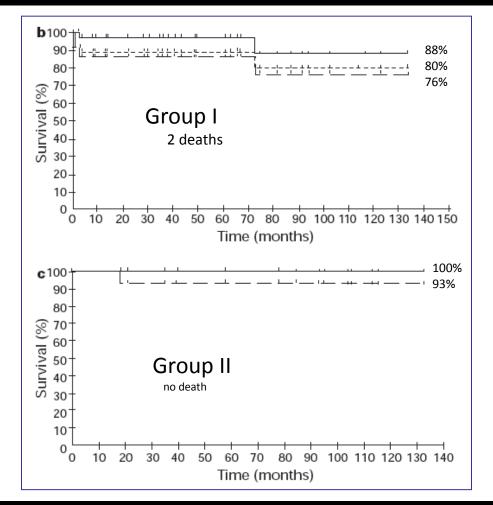
3RD WO

14-15th November 2014 Cape Town - South Afric

BMT for SCD

- Why should we wait until they have irreversible complications?
- Very high mortality after complications
- Poor quality of life
- We dont have good severity predictors for the disease

BMT for SCD


- Why should we wait until they have irreversible complications?
- Very high mortality after complications
- Poor quality of life
- We dont have good severity predictors for the disease

The ethics of a proposed study of hematopoietic stem cell transplant for children with "less severe" sickle cell disease

Robert S. Nickel,¹ Jeanne E. Hendrickson,² and Ann E. Haight¹

BMT in SCD – How early?

- N= 50
- Group I 36 patients
 - Stroke, ACS
 - Med Age 8,6 years (1,7 a 23 a)
- Group II 14 patients
 - Families returning to Africa wanted to take the kids cured home
 - Med Age 2 years (0,9 a 15 years)
- Graft failure and rejection
 - 25% group I
 - 7% group II

Vermylen C, 1998 BMT

@

3RD WO

14-15th November 2014 Tape Town - South Afr

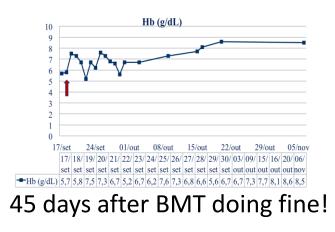
Conclusions

SRD WORKSHOP OF THE WBMT OF THE WBMT

- Health problem in Brazil and worldwide
- Compromise the quality of life
- Pain is the hallmark of sickle cell disease
- BMT can cure Sickle Cell Disease and Thalassemia major
- The procedure can be safely offered not only to children, but also to adults
- Since they have several comorbidities sometimes a careful selection and treatment of complications should performed before transplant
- A strong collaboration with a transfusion agency is necessary for the best outcome

BMT in Sickle Cell Disease

REPARENT SRD WORKSHOP OF THE WEART


- Female 22 years
 - Transfused since 9 months
 - With 9 years started with frequent transfusion reactions
 - Since 2 years ago reactions with all transfusions
 - Hb 6,3 g/dL
 - HbS 85%
 - Antibodies anti-E, anti-e and anti-C

- Female 29 years old
- Transfused irregularly since childhood
- With 20 years started with complications of the disease
- Refractory leg ulcer
- Antibodies identified
 - Anti-K, Anti-Kpa, Anti-Fya, Anti-S impossible to rule aout Anti-Jkb, Dia and Cw.

BMT in Sickle Cell Disease

REPARTMENT BARD WORKSHOP OF THE WORKSHOP OF THE WORKSHOP

- Female 22 years
 - Transfusion block
 - No blood available
 - Rituximab 3x, IV
 immunoglobulin 2x
 plasmapheresis

- Female 29 years old
 - After first phenotyped transfusion severe hyperhemolisys Hb 3,5 g/dL
 - 48 donors were called but only 2 compatible
 - Rituximab,
 Ciclophosphamide and plasmapheresis
- 4 months after transplant doing fine!!

Hemocentro Ribeirão Preto

3RD

OF THE W

- Ana Cristina Pinto
- Gil de Santis
- Ivan Angulo

Dermatologista

Marco Andrey Cipriani
 Frade

To my patients

3RD WORKSHOP

Hemoglobinopathies Major differences TM and SCD

	Thalassemia	Sickle cell disease
Prognostic criteria for disease severity	Homogenous pattern for β thalassemia major	Wide genetic variability; inconsistent development of complications
Currently accepted indication for allogeneic HSCT	Transfusion dependency. For patients with an HLA identical sibling donor or well-matched related or unrelated donor: as soon as possible to avoid transfusion associated complications	Patient with matched sibling donor and complication requiring treatment with hydroxurea or transfusion
Total number of HSCT reported	> 3000 patients transplanted	500-600 patients transplanted
Risk factors for transplant-related complications	Age, organ dysfunction due to iron overload	Age, history of cerebral events
Alternative effective medical therapy	Life-long transfusion with chelation	Hydroxyurea: not curative, but ameliorates some complications. Chronic transfusion and chelation therapy.
Key issue for transplant outcome	Control of iron overload and related tissue damage	Cure from chronic inflammation and prevention of future SCD-related organ damage
Conditioning regimen	Needs to ablate an expanded bone marrow	Reduced intensity regimens seem to induce stable chimerism and full donor erythropoiesis
Possibility for gene therapy	First successful case reported. Phase I clinical trial ready to start	No successful case reported. Phase I clinical trial ready to start

Angelucci et al. Haematologica 2014

A doença vs TMO

Primum non nocere!

Dano	ТМО
Death	Low death rate after BMT
Infections	Long term imunesupression after SCT
Acute complications	Mucosite, alopecia, SOS, hemorragia cerebral, PRES
Chronic complications	GVHDc
Reproduction	Possível por toxicidade do condicionamento
Social	Problema intenso de curta duração

BLOOD, 7 AUGUST 2014 · VOLUME 124, NUMBER 6

A doença vs TMO

Primum non nocere!

Dano	ТМО	Doença Falciforme
Óbito	Baixa chance de morrer de complicações do TMO	Risco muito baixo na infância com cuidados adequados de suporte, alto risco de morrer prematuramente quando adulto
Infecções	Pacienes muito imunossuprimidos por longo tempo pós TMO	Função esplenica defeituosa ou ausente
Complicações Agudas	Mucosite, alopecia, SOS, hemorragia cerebral, PRES	CVA, sequestro esplenico, STA, colecistite, priapismo, crise aplástica, AVC
Complicações Crônicas	GVHDc	Dor crônica, necrose asséptica, lesões orgânicas (rim, pulmão, retina)
Problemas reprodutivos	Possível por toxicidade do condicionamento	Possível por lesão órgãos (disfunção erétil, problemas na gestação) ou hidroxiurea
Social	Problema intenso de curta duração	Pela vida toda Doença crônica