HDC SCT in Hodgkin Lymphoma Changing paradigm

Saad Akhtar, M.D.

The 4th WBMT Congress and Workshop Riyadh, Saudi Arabia 15-17 January, 2017

Outline of the talk 20 min

- Introduction
- Historic trials
- Changes in the primary treatment and response adopted therapy
- Prognostic factors validation / evaluation at failure
- Salvage chemotherapy selection
- Conditioning regimens
- Post HDC auto-SCT consolidation
- Post HDC auto-SCT failure and management + allo SCT
- Available finances and resources health systems

In 20 minutes ??

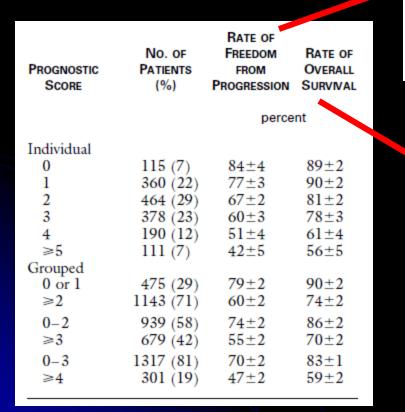
No way

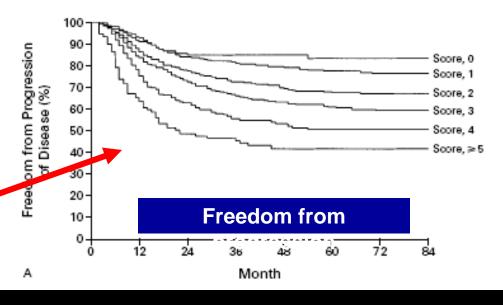
Introduction

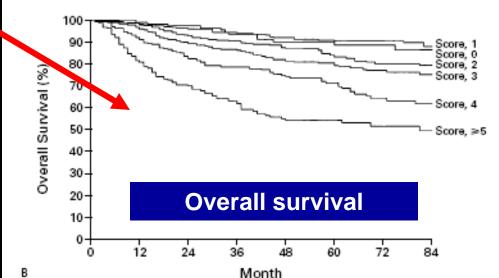
- Primary treatment for adult and pediatrics patients with HL, using current multi-agent anthracycline based chemotherapy <u>+</u> XRT,
 long term cure in
 - 70% of patients
 - >95% for early favorable
 - 70-75% with advanced stage / high risk

Introduction

 Unlike 80's and 90's, HDC auto-SCT was used as 3rd or 4th line treatment, now most patients with first relapse or primary refractory disease are planned for HDC auto-SCT. Most of the mature data is being reported on patients that underwent transplant 10-20 years ago.


Introduction


• I will be addressing some historic trials and the salient differences and changes in the management that have evolved over the last decade and • either affected or likely to affect the outcome of HDC auto-SCT.


 These important issues impacting HDC auto-SCT outcomes were shown in in the outline

Historic data and trials

The International Prognostic Factors Project on Advanced Hodgkin's Disease has developed a prognostic score based on 7 adverse factors: Hasenclever D, Diehl V: N Engl J Med 1998; 339:1506-1514

We compare our results with this ----- before

Moccia AA, Donaldson J, Chhanabhai M et al. International Prognostic Score in Advanced-Stage Hodgkin's Lymphoma: Altered Utility in the Modern Era. *J Clin Oncol 2012; 30:3383-3388*

International Prognostic Score in Advanced-Stage Hodgkin's Lymphoma: Altered Utility in the Modern Era

Alden A. Moccia, Jane Donaldson, Mukesh Chhanabhai, Paul J. Hoskins, Richard J. Klasa, Kerry J. Savage, Tamara N. Shenkier, Graham W. Slack, Brian Skinnider, Randy D. Gascoyne, Joseph M. Connors, and Laurie H. Sehn

Rates of 5-Year OS According to International Prognostic Score

				OS		
IPS	Patie No.	ents %	All Patients $(N = 740)$	Age \leq 65 Years (n = 686)		Original Report
0	57	8	98 ± 2	98 ± 2	9	89 ± 2
1	195	26	97 ± 1	97 ± 1	7	90 ± 2
2	195	26	91 ± 2	92 ± 2	11	81 ± 2
3	155	21	88 ± 3	91 ± 3	13	78 ± 3
4	88	12	85 ± 4	88 ± 4	29	61 ± 4
≥ 5	50	7	67 ± 7	73 ± 7	17	56 ± 5
0-3	602	81	93 ± 1	94 ± 1	11	83 ± 1
≥ 4	138	19	78 ± 4	83 ± 4	26	59 ± 2

NOTE. Plus-minus values are rate estimates plus or minus standard error. Abbreviations: FFP, freedom from progression; IPS, International Prognostic Score; OS, overall survival.

Improvement in outcome

Historic trials

Who / How to transplant Will not be addressed as most eligibility criteria, salvage chemo and HDC are likely equal

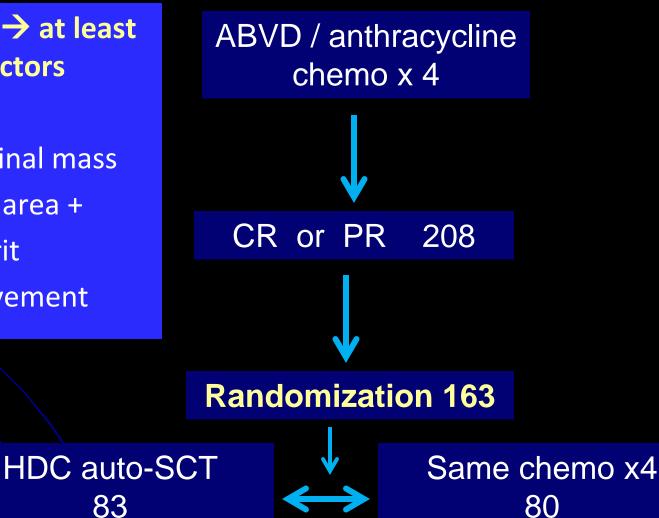
When to transplant

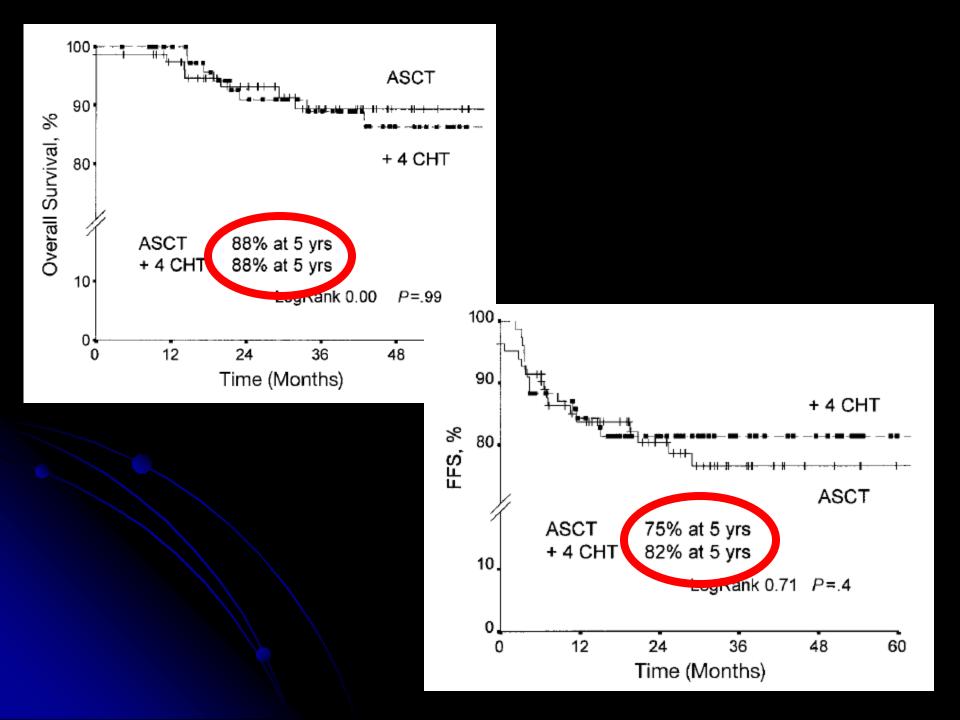
UPFRONT ABBREVIATED INDUCTION

UPFRONT CONSOLIDATION ALL PATIENTS IPI STRATIFIED

INDUCTION FAILURE PR NR / PD **RELAPSE** SENSITIVE RESISTENT

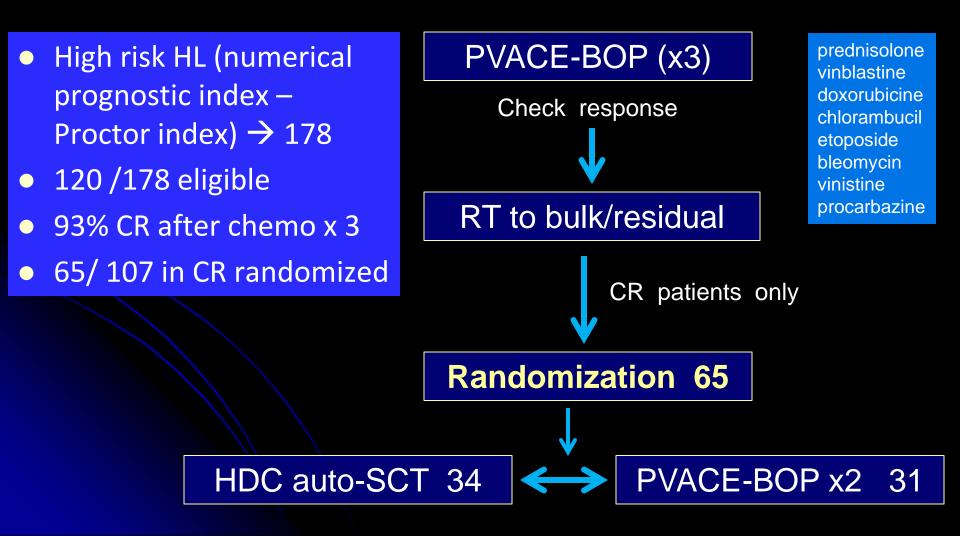
UPFRONT ABBREVIATED INDUCTION Risk factor STRATIFIED

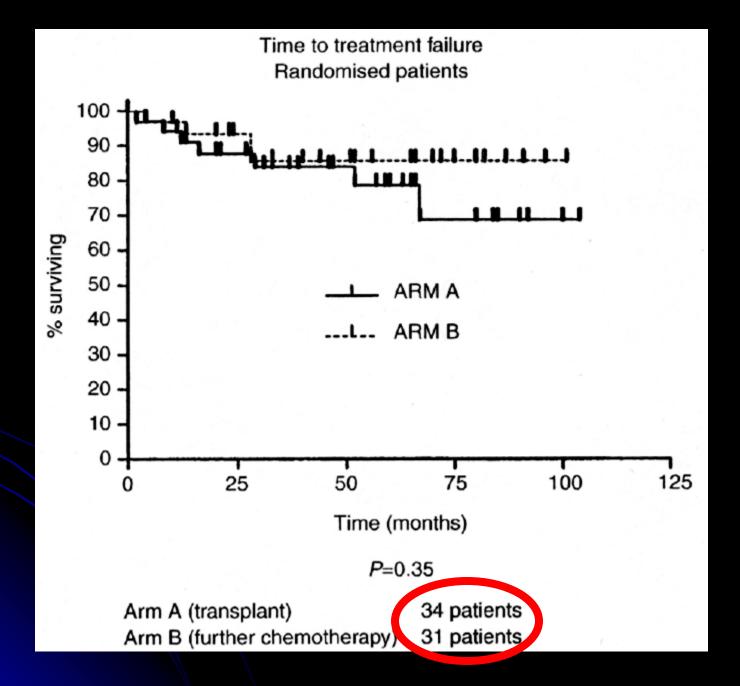

UPFRONT CONSOLIDATION ALL PATIENTS


Risk factor STRATIFIED

INDUCTION FAILURE PR NR / PD **RELAPSE** SENSITIVE RESISTENT High-dose therapy and autologous stem-cell transplantation versus conventional therapy for patients with advanced Hodgkin's lymphoma responding to front-line therapy. Federico M et al. JCO. 2003 15;21:2320-5

Stage IV HL and → at least 2 other risk factors


- elevated LDH
- Bulky mediastinal mass
- >1 extranodal area +
- Low hematocrit
- Inguinal involvement



UPFRONTUPFRONTABBREVIATEDCONSOLIDATIONINDUCTIONALL PATIENTSRisk factor STRATIFIEDRisk factor STRATIFIED

INDUCTION FAILURE PR NR / PD **RELAPSE** SENSITIVE RESISTENT A population-based study of intensive multi-agent chemotherapy with or without autotransplant for the highest risk Hodgkin's disease patients identified by the Scotland and Newcastle Lymphoma Group (SNLG) prognostic index. A Scotland and Newcastle Lymphoma Group study (SNLG HD III). Eur J Cancer. 2002 Apr;38(6):795-806.

UPFRONT ABBREVIATED INDUCTION

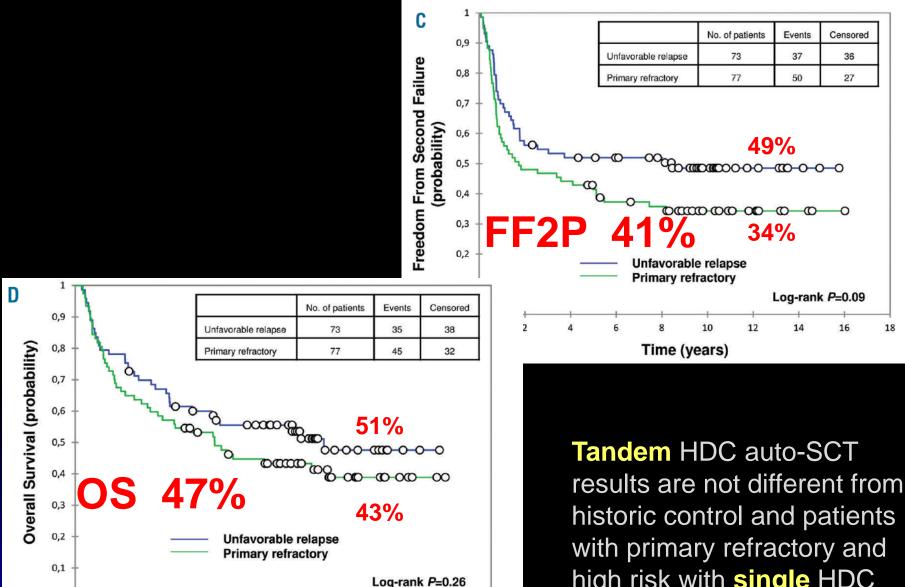
UPFRONT CONSOLIDATION

ALL PATIENTS IPI STRATIFIED

Treatment like this \rightarrow even in high risk group Long term toxicity \rightarrow concern for HDC auto-SCT in this setting

UPFRONT ABBREVIATED INDUCTION

UPFRONT CONSOLIDATION


ALL PATIENTS

PR NR / PD

RELAPSE SENSITIVE

RESISTENT EARLY / LATE / OTHER Single or tandem autologous stem-cell transplantation for first-relapsed or refractory Hodgkin lymphoma: 10-year follow-up of the prospective H96 trial by the LYSA/SFGM-TC study group. Sibon D et al. Haematologica. 2016 101:474-81.

- Phase II trial
- Risk-adapted strategy
- Single vs tandem HDC auto-SCT for relapsed/refractory disease
- Risk factors
 - primary refractory disease OR
 - 2/3 risk factors:
 - relapse <12 months</p>
 - stage III-IV or
 - relapse in a previously XRT area post chemo+XRT

Time (years)

high risk with **single** HDC auto-SCT.

UPFRONT ABBREVIATED INDUCTION

UPFRONT CONSOLIDATION

ALL PATIENTS

INDUCTION FAILURE PR NR / PD

RELAPSE SENSITIVE RESISTENT EARLY / LATE / OTHER

Relapsed disease

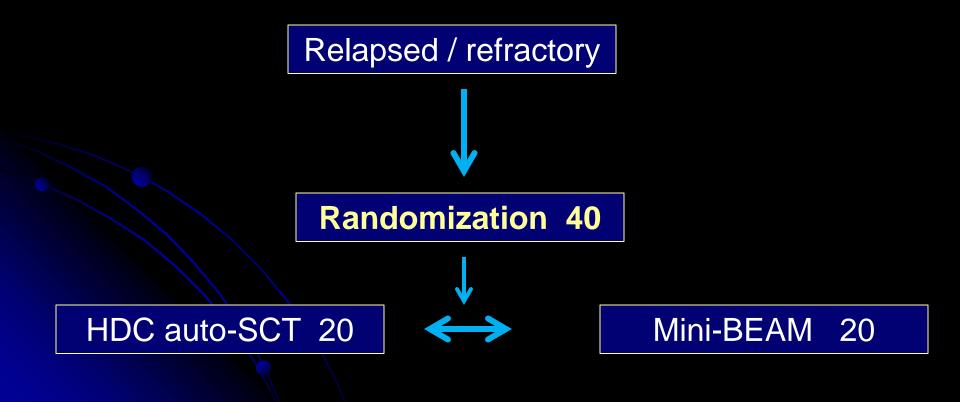
Relapsed disease is the most common indication for HDC auto-SCT in HL

Relapsed disease

Likely hood of cure for patients relapsing after anthracycline based chemo who received salvage chemotherapy +/- XRT

Historic perspective 1990s At best $\rightarrow 20 - 40$ %

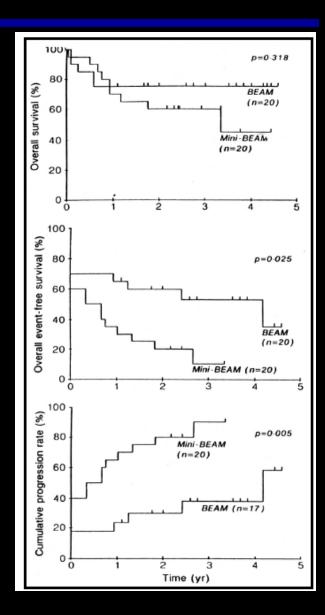
- Bonadonna G et al. Ann Oncol. 1991;2(Suppl 1):9–16.
- Longo DL et al. J Clin Oncol. 1992;10(2):210–218.
- Lohri A et al. Blood. 1991;77(10):2292–2298.
- Yuen AR et al.. Blood. 1997;89(3):814–822.


Relapsed disease

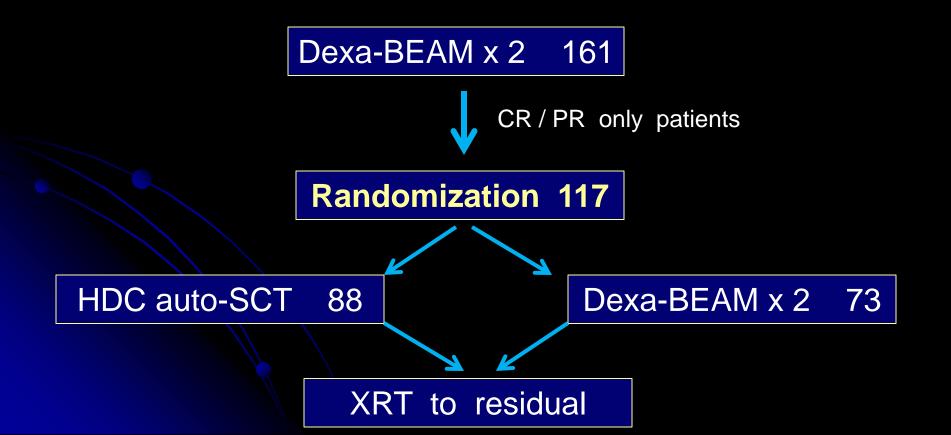
HDC auto-SCT Vs Salvage

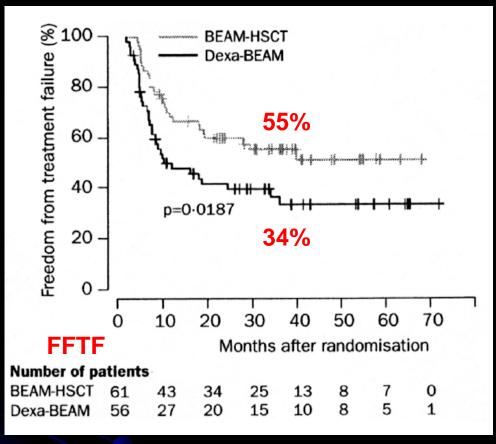
Phase III trials

Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin's disease: results of a BNLI randomised trial. Linch D. Lancet 1993; 341: 1051


Relapsed and refectory HL patients Intended accrual 66 patients

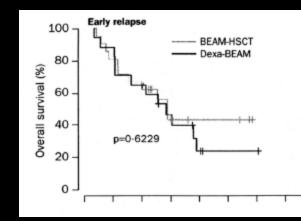
BNLI trial

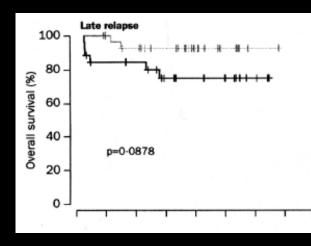

• 40 patients \rightarrow ONLY

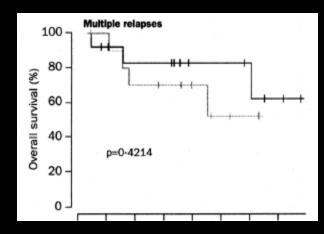

- 3 yr EFS 53% vs 10% (*P*=0.025)
 PFS → *P*= 0.005
- Closed early → patients refused non HDC auto-SCT arm
- No difference in OS → P=0.318 patients who failed mini BEAM were offered HDC auto-SCT

Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin's disease: a randomised trial. Schmitz N et al. Lancet **2002**;359: 2065

GHSG/EBMT trial → Relapsed (early, late, multiple) HL patients






GHSG / EBMT trial

DFS is better

OS not significantly different

S

U

R

Α

The lack of a survival benefit in these randomized trials has been attributed to patients in the non-transplant arm

undergoing transplant at the time of second /next relapse

UPFRONT

ABBREVIATED

UPFRONT CONSOLIDATION

ALL PATIENTS IPI STRATIFIED

INDUCTION FAILURE PR NR / PD

RELAPSE SENSITIVE RESISTENT EARLY / LATE / OTHER

 The outcome of HDC auto-SCT in primary refractory Hodgkin's lymphoma (PR-HL) is not as encouraging as in relapsed HL.

 Many studies have shown that duration of CR is one of the most important determinant of out come at relapse

What is refractory **Definition**?

- partial response after <u>planned treatment</u> (PR)
- no response (NR)

- stable disease (SD)
 - progressive disease (PD)
- relapsing within 3 months of finishing the planned treatment (short CR / CRu)
- ? <12 CR (not included in most reports/early relapse)

 Difficult to compare salvage chemotherapy alone vs HDC auto-SCT

 Patient with disease chemosensitive to salvage chemotherapy → HDC auto-SCT

Progressing → not offered HDC auto-SCT

- 1078 pts>> 82 refractory
- Chemotherapy (24) or HDC (27)
- 21 PD>>died (29%) patients were not candidate for curative intent therapy.
- HDC ASCT clearly showed survival benefit over conventional dose salvage
- 4 year OS 81% vs 38% (P = 0.019)
- Morabito F, Stelitano C, Luminari S, et al: The role of high-dose therapy and autologous stem cell transplantation in patients with primary refractory Hodgkin's lymphoma: a report from the Gruppo Italiano per lo Studio dei Linfomi (GISL). Bone Marrow Transplant 37:283-8, 2006

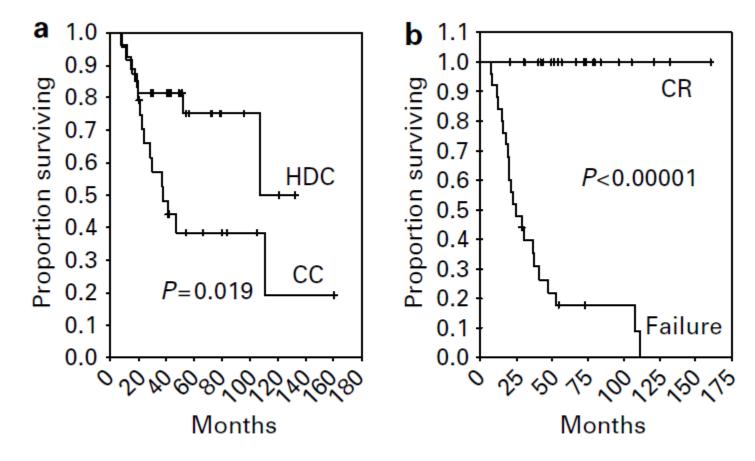


Figure 2 Kaplan-Meier estimates of OS for patients according to therapy (a) and to the achievement of CR regardless of the therapeutic approach (b).

Morabito F et al: The role of high-dose therapy and autologous stem cell transplantation in patients with primary refractory Hodgkin's lymphoma: a report from the Gruppo Italiano per lo Studio dei Linfomi (GISL). Bone Marrow Transplant 37:283-8, 2006

Author, year, Institution	Patients	f/u	EFS / PFS	OS	Prognostic factors for PFS or OS	Comments
Chopra 1993 Univ. College London	46 (of 155)	5 years	33 %	-	Tumor mass, relapse status females, 3 or more lines of chemo(PFS)	Factors for all patients
Bierman 1994 Nebraska	44	36 m	22 %	-	No comments	No comments
Reece 1995 Vancouver	30	3.6 years	42 %	30%	Bleomycin lung toxicity (OS)	Factor for PR-HL OS 30% estimated from graph
Horning 1997 Stanford	29 (of 119)	40 m	60 %	32 %	B symptoms, response to salvage chemo, lung or marrow involvement at transplant (OS)	Factors for all patients % estimated from graph
Lazarus 1999 ABMTR (1989- 95)	122	28 m After BMT	38 %	50 %	B symptoms at dx, performance status at HDC (OS)	Factor for PR-HL 12% treatment related mortality
André 1999 Paris	86	22 m from dx	25 %	35 %	Response to salvage chemo (OS)	78 of 86 patients with progressive disease
Sweetenham 1999 EBMT (1979-1995)	175	73 m	32 %	36 %	late transplant (after 18 months) (OS)	Factor for PR-HL No salvage chemo 75 patients(43%) 34/100 PD on salvage 66/100 SD or minimal response
Josting ⁸ , 2000 German HLSG	70 (of 206)	52 m	31 %	43 %	Performance status, no CR1, age > 50	Factor for PR-HL

Author, year, Institution	Patients	f/u	EFS / PFS	OS	Prognostic factors for PFS or OS	Comments	
Josting 2000 German HLSG	70 (of 206)	52 ms	31 %	43 %	Performance status, no CR1, age > 50	Factor for PR-HL	
Sureda 2001 GEL / TAMO Spain	75 (of 494)	26 ms	17 %	-	 > 1 prior chemo, response to salvage chemo (OS) 	Factors for all patients PR-HL 49 and resistant relapse 26	
Fermé 2002 GELA	67 (of 157)	50 m	23 %	30 % B symptoms, response to salvage chemo (OS)		Factors for all patients	
Czyz 2004 Polish Centers	76	3 years	-	34 %	Bulky disease (OS)	Factor for PR-HL	
Moskowitz 2004 Memorial SKCC	75	10 years For surviving	45 %	48 %	Response to salvage (OS)	Factor for PR-HL All biopsy proven, very long F/U	
Lavoie 2005 Vancouver	23 (of 100)	11.4 years	39 %	39 %	> 1 prior chemo (PFS)	Factors for all patients Very long F/U 9% second malignancy at 15 y	
Mortabito 2006 Italian centers (1988-2002)	27 (of 72)	4 year		81 %	Achieving CR	Factors for all patients HDC vs curative chemo vs palliative chemo	
Akhtar 2007 Seudi Arabia	66	38 m from dx 23 m after BMT	38 %	64 %	> LDH for EFS Mediastinal invol for OS	Short f/u Uniform salvage and HDC	

Relapsed disease

Definite indicated

- Relapse < 2 year after completion of primary chemotherapy
- Relapse with B symptoms
- Relapse in extranodal sites
- Relapse in previously irradiated sites
- Relapse as stage III-IV
- Relapse with Bulky disease

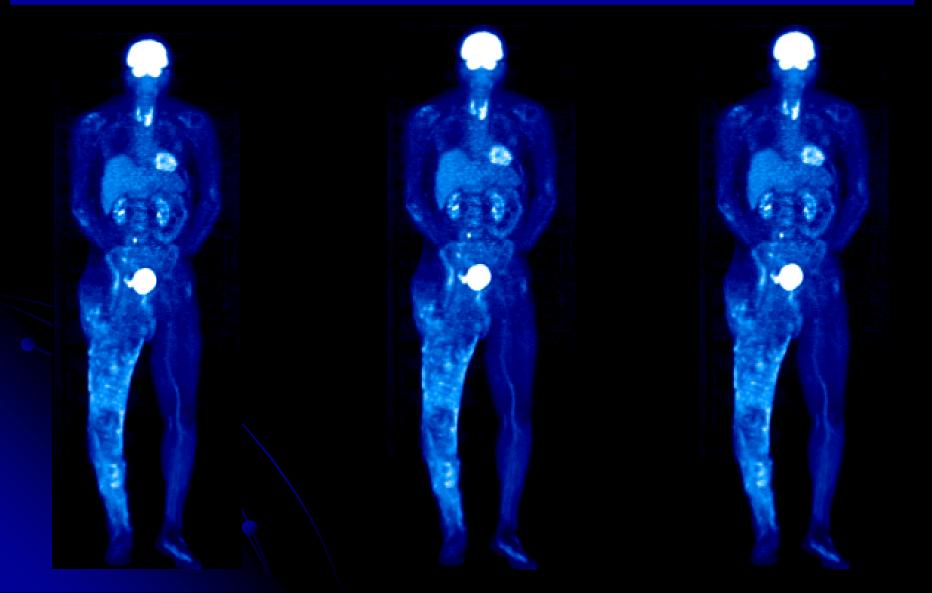
Controversial but probably indicated

Relapse only in previously unirradiated lymph nodes, in the absence of B-symptoms, occurring > 1 year after completion of primary chemotherapy

Timing of HDC auto-SCT

Superior EFS and in some studies, better OS Better OS when compare with historic control Large selection bias Considered standard option

Timing of HDC auto-SCT


UPFRONT ABBREVIATED INDUCTION

UPFRONT CONSOLIDATION ALL PATIENTS IPI STRATIFIED

PR NR / PD

RELAPSE SENSITIVE RESISTENT EARLY / LATE / OTHER

Changes in the primary treatment and response adopted therapy

Over the last 20 years

- North American \rightarrow ABVD
- European → ABVD and BEACOPP / BEACOPPescalated
- Main change is FDG-PET scan based decision making in clinical trials focused on two main themes
 Escalation if FDG-PET scan → positive
 De-escalation if FDG-PET scan → Negative
- All these studies with short f/u for long term OS

Over the last 20 years

 An ongoing phase III ECHELON-1 trial has integrated CD-30 antibody brentuximab vedotin (BV) in upfront setting and comparing ABVD as a control arm to AVD-BV.

- What will be the long term outcome of patients failing in these FDG-PET scan response based treatment paradigms ?
- Will they be behaving differently compared to those who failed ABVD and BEACOPP
- AVD-BV → the outcomes of salvage therapy and HDC auto-SCT remains to be seen

• ? These issues are likely to emerge in next few years.

Prognostic factors validation and evaluation at the time of first failure

 A prognostic factor is a measurement or classification of an individual patient, performed at or soon after diagnosis that gives information on the likely outcome of the disease.

It is generally the probability of cure for various values of a prognostic factor.

It may be used for informing the patient, or defining or describing the study population or adjusting the data analysis

the most important role of the prognostic factor is in helping choose an appropriate treatment strategy.

Andreas Josting. Expert Rev. Hematol;2010:3, 583-592

- Factors tested for primary disease can be tested again for their predictive values in relapsed / refractory setting
- They may or may not be valid in this setting

 As long as there is no paradigm shift in staging / chemotherapy / response evaluation / supportive care / post HDC auto-SCT failure management, they are likely to reflect their prognostic significance

 Hodgkin Lymphoma International Prognostic Score →most widely used→in patients with newly diagnosed advanced HL

 Its utility has already been challenged due to improvement in OS over the last 20 years

 FDG-PET scan response after salvage is an important prognostic factor. Many reports → FDG-PET scan alone or in combination with other factors as an important prognostic factor. Moccia AA, Donaldson J, Chhanabhai M et al. International Prognostic Score in Advanced-Stage Hodgkin's Lymphoma: Altered Utility in the Modern Era. *J Clin Oncol 2012; 30:3383-3388*

International Prognostic Score in Advanced-Stage Hodgkin's Lymphoma: Altered Utility in the Modern Era

Alden A. Moccia, Jane Donaldson, Mukesh Chhanabhai, Paul J. Hoskins, Richard J. Klasa, Kerry J. Savage, Tamara N. Shenkier, Graham W. Slack, Brian Skinnider, Randy D. Gascoyne, Joseph M. Connors, and Laurie H. Sehn

Rates of 5-Year OS According to International Prognostic Score

				OS				
IPS	Patie No.	ents %	All Patients $(N = 740)$	Age \leq 65 Years (n = 686)		Original Report		
0	57	8	98 ± 2	98 ± 2	9	89 ± 2		
1	195	26	97 ± 1	97 ± 1	7	90 ± 2		
2	195	26	91 ± 2	92 ± 2	11	81 ± 2		
3	155	21	88 ± 3	91 ± 3	13	78 ± 3		
4	88	12	85 ± 4	88 ± 4	29	61 ± 4		
≥ 5	50	7	67 ± 7	73 ± 7	17	56 ± 5		
0-3	602	81	93 ± 1	94 ± 1	11	83 ± 1		
≥ 4	138	19	78 ± 4	83 ± 4	26	59 ± 2		

NOTE. Plus-minus values are rate estimates plus or minus standard error. Abbreviations: FFP, freedom from progression; IPS, International Prognostic Score; OS, overall survival.

Improvement in outcome

Author	Total #	s/s	extranodal	12 m	^l-	anemia	Age >45	Lymphopeni a	Low albumin	PS	bulky	PR after sal	HL-IPS	others
A	Ĕ	В	۵ ۵	V		ອ	A	L) a	al L	<u> </u>	q	д_	I	Ō
Moskowitz	65	Х	Х	X										
Josting	422			X	Х	Х								
Josting	206						X 50			x				No CR-1
Bierman	379					Х	Х	Х	Х					
Sureda	357		X 2	X							X	X		<1995
Sureda	494											X		<1991 <u>></u> 2 lines
Akhtar	141											X	X	

- Are these prognostic factors still able to discriminate outcome?
- What would be the best combination of prognostic factors at the time of relapse and progression?
- Failure after more aggressive treatment / after BV may be an indication of resistant disease / poor outcome post HDC auto-SCT
- Should a positive FDG-PET scan after salvage chemotherapy warrant another line of salvage to achieve a CR prior to HDC
- Do we have a therapy that can overcome any of the above mentioned poor prognostic factors?

Salvage chemotherapy selection

Salvage chemotherapy selection

- There is no superiority of a specific salvage chemotherapy regimen over the others
- ESHAP ICE DHAP mini/Dexa BEAM
 IMVP-16 GDP IGEV GemOx
 - Many new <u>non</u>-platinum based regimens

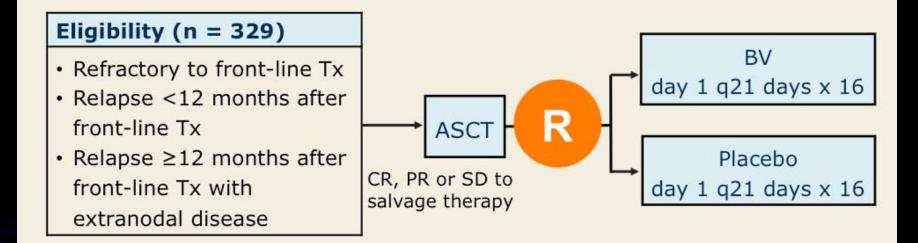
Salvage chemotherapy selection

- Use of BV as single agent or in combination with other salvage chemotherapy regimens and with nivolumab (ASH) 2016.
- Limited phase II trials have shown superior response rate of these combinations, but with a higher toxicity
- It may take few years before an effective / safe dosing schedule and combination of BV + chemotherapy or other agents will be available in this setting.

- What will be the best salvage combination for this group in the presence of BV?
- What will be the outcomes of HDC auto-SCT in those who had received BV during primary treatment?
- How BV use before HDC auto-SCT will impact post HDC failure?

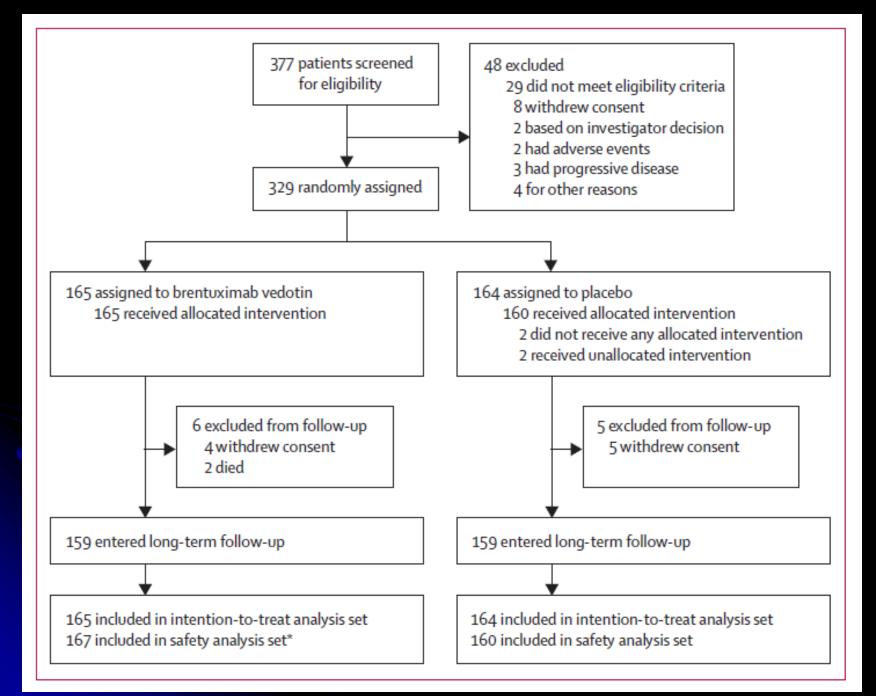
Conditioning regimens

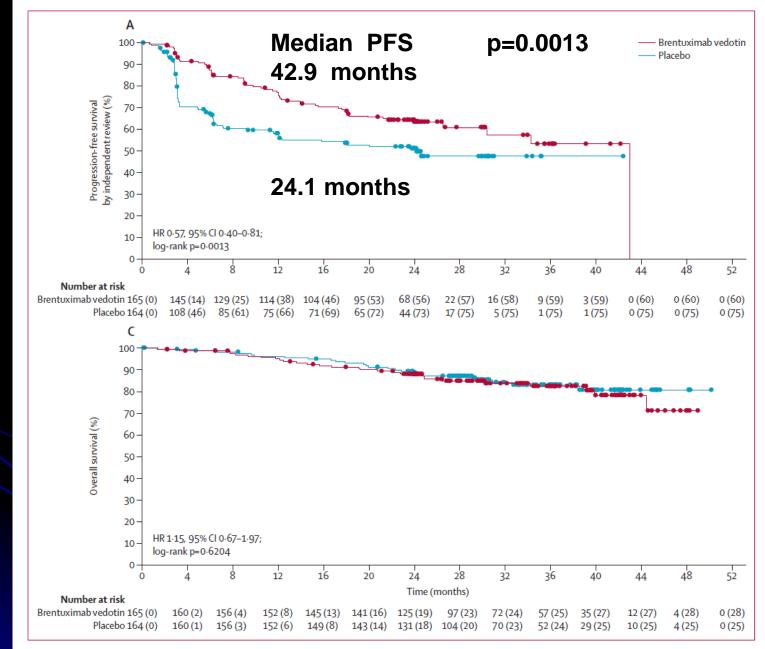
Conditioning regimens


- There is no new large scale data exploring newer autologous conditioning regimens
- BEAM or with cyclophosphamide (BEAC), or etoposide (CBV) and cyclophosphamide -TBI are still the most common regimens.
- LEAM 300 vs 200 lomustine

 Gemcitabine and bendamustine are also reported in limited number of patients

Post HDC auto-SCT consolidation


Phase III AETHERA Study Design



Patients who experienced disease progression on the placebo arm could subsequently receive BV on another trial.

- Primary endpoints: Progression-free survival per independent review
- Secondary endpoints: Overall survival, safety, tolerability

Moskowitz CH et al. Proc ASH 2014; Abstract 673.

Figure 2: Progression-free and overall survival analyses

Kaplan-Meier plots showing the primary endpoint of progression-free survival by independent review (A), progression-free survival by investigator assessment (B), and interim analysis of overall survival (C). Filled circles show censored patients. No p value was calculated for the analysis in panel B.

	Ν	Progression-free survival by independent review	Overall survival
≥1	329	0.57 (0.40–0.81)	1.15 (0.67–1.97)
≥2	280	0.49 (0.34–0.71)	0.94 (0.53–1.67)
≥3	166	0.43 (0.27–0.68)	0.92 (0.45–1.88)

Data are hazard ratio (95% CI), unless otherwise indicated. Risk factors were primary refractory Hodgkin's lymphoma or relapse less than 12 months from completion of frontline therapy, partial response or stable disease as best response to most recent salvage therapy, extranodal disease at pre-autologous stem-cell transplantation relapse, B symptoms at pre-autologous stem-cell transplantation relapse, or two or more previous salvage therapies

Table 2: Hazard ratios for progression-free and overall survival by number of risk factors

post-hoc analysis

AETHERA

- ASH 2016, Moskowitz C recommended use of BV post HDC auto-SCT in patients with at least 2/5 risk factors
 - (a) relapsed HL, initial CR <12 months or refractory 1st line
 - (b) <CR to most recent salvage chemotherapy
 - (c) extranodal involvement at the start of salvage
 - (d) B symptoms at the time of salvage
 - (e) >1 salvage chemotherapy required to achieve PR/CR
- This was apparently not a preplanned analysis in AETHERA trial nor so far endorsed by the other AETHERA investigators.
 - Education Program of the American Society of Hematology American Society of Hematology Education Program. 2016 Dec 02;2016(1):331-8.

AETHERA

- So far, there is no OS benefit reported in AETHERA trial
- Could early vs. late use of BV post HDC auto-SCT will be of same benefit?
- Given the very high cost of this drug and while waiting for survival benefit at this time, careful selection to identify an agreed upon high risk group that may truly benefit from BV is warranted.
- What will be the role of BV after early vs late failure of patients enrolled in upfront BV use (ECHELON-1 trial comparing ABVD to AVD-BV)?

Post HDC auto-SCT treatment failure and management

VOLUME 30 · NUMBER 18 · JUNE 20 2012

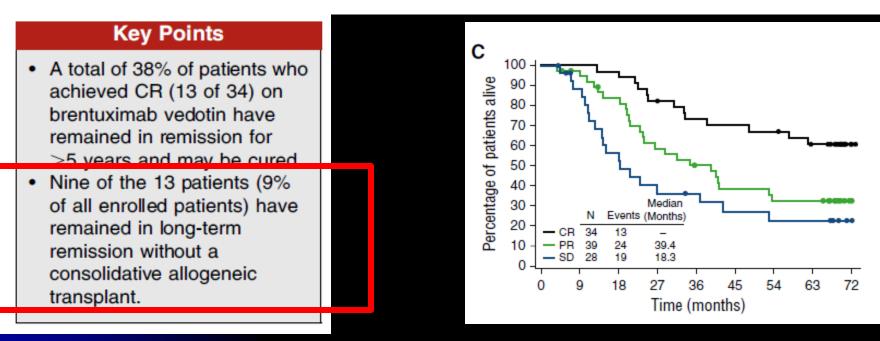
JOURNAL OF CLINICAL ONCOLOGY

Results of a Pivotal Phase II Study of Brentuximab Vedotin for Patients With Relapsed or Refractory Hodgkin's Lymphoma

Anas Younes, Ajay K. Gopal, Scott E. Smith, Stephen M. Ansell, Joseph D. Rosenblatt, Kerry J. Savage,

Parameter	Number 102	%		
Objective response	76	75		
Complete remission	35	34		
Partial remission	41	40		
Stable disease	22	22		
Progressive disease	3	3		
Not evaluable	1	1		
Median response duration, months	6.7			
Median response duration–CR pts, months $(n = 35)$	20.5			
Median PFS, months	5.6			
Median OS, months	22	22.4		

Brief Report



CLINICAL TRIALS AND OBSERVATIONS

Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma

Robert Chen,^{1,*} Ajay K. Gopal,^{2,*} Scott E. Smith,³ Stephen M. Ansell,⁴ Joseph D. Rosenblatt,⁵ Kerry J. Savage,⁶ Joseph M. Connors,⁶ Andreas Engert,⁷ Emily K. Larsen,⁸ Dirk Huebner,⁹ Abraham Fong,⁸ and Anas Younes¹⁰

¹City of Hope National Medical Center, Duarte, CA; ²Division of Medical Oncology, Department of Medicine, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA; ³Division of Hematology and Medical Oncology, Department of Medicine, Loyola University Medical Center, Maywood, IL; ⁴Mayo Clinic, Rochester, MN; ⁵Division of Hematology and Oncology, Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL; ⁶British Columbia Cancer Agency Centre for Lymphoid Cancer, Vancouver, BC, Canada; ⁷German Hodgkin Study Group, Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany; ⁸Seattle Genetics, Inc., Bothell, WA; ⁹Millenium Pharmaceuticals, Inc., Cambridge, MA; and ¹⁰Memorial Sloan Kettering Cancer Center, New York, NY

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 22, 2015

VOL. 372 NO. 4

PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma

Variable	All Patients (N=23)	Failure of Both Stem-Cell Transplantation and Brentuximab (N=15)	No Stem-Cell Transplantation and Failure of Brentuximab (N=3)	No Brentuximab Treatment (N = 5)†
Best overall response — no. (%)		(((=1))	(((==))	(11-2)1
Complete response	4 (17)	1 (7)	0	3 (60)
Partial response	16 (70)	970/ D \vec{P}^{2} ⁽⁸⁰⁾	3 (100)	1 (20)
Stable disease	3 (13)	87% RR ^{2 (80)}	0	1 (20)
Progressive disease	0	0	0	0
Objective response				
No. of patients	20	13	3	4
Percent of patients (95% CI)	87 (66–97)	87 (60–98)	100 (29–100)	80 (28–99)
Progression-free survival at 24 wk — % (95% CI)‡	86 (62–95)	85 (52–96)	NC	80 (20–97)
Overall survival — wk				
Median	NR	NR	NR	NR
Range at data cutoff¶	21-75	21-75	32–55	30–50

* NC denotes not calculated, and NR not reached.

 \dagger In this group, two patients had undergone autologous stem-cell transplantation and three had not.

 \ddagger Point estimates were derived from Kaplan–Meier analyses; 95% confidence intervals were derived from Greenwood's formula.

 \S The estimate was not calculated when the percentage of data censoring was above 25%.

Responses were ongoing in 11 patients.

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

phase 1b KEYNOTE-013

Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure

Philippe Armand, Margaret A. Shipp, Vincent Ribrag, Jean-Marie Michot, Pier Luigi Zinzani, John Kuruvilla, Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, Shelonitda Rose, and Craig H. Moskowitz

				gressed After	Transpl	antation Ineligible
_		otal (N = 31)	Transplantation (n = 22)		Transplantation Ineligible (n = 9*)	
Best Overall Response	No.	% (90% CI+)	No.	% (90% CI+)	No.	% (90% CI†)
Overall response rate	20	65 (48 to 79)	16	73 (53 to 87)	4	44 (17 to 75)
Complete remission	5	16 (7 to 31)	3	14 (4 to 32)	2	22 (4 to 55)
Partial remission	15	48 (33 to 64)	13	59 (40 to 77)	2	22 (4 to 55)
Stable disease	7	23 (11 to 38)	4	18 (7 to 37)	3	33 (10 to 66)
Progressive disease	4	13 (5 to 27)	2	9 (2 to 26)	2	22 (4 to 55)

*One patient refused transplantation and was included in the transplantation ineligible group. That patient achieved a complete remission as best response. †Based on binomial exact confidence interval method.

KEYNOTE-087 multi-cohort phase 2 study

Cohort 1	Cohort 2	Cohort 3
Failed BV post	Failed BV NO	NO BV post auto-SCT
auto-SCT 30 pts	auto-SCT (refractory) 30 pts	30 pts

Response	Cohort	: 1	Cohort	2	Combi	ned
	Ν	%	Ν	%	Ν	%
PR	15	50	16	53	31	51.7
CR	6	20	8	27	14	23
ORR	21	70	24	80	45	75
Stable Disease	6	20	4	13	10	16.7
Previous lines					<u>></u> 4 in 67%	
Median age	36		33			

Allogeneic ???

- Myeloablative versus reduced intensity allogeneic stem cell transplantation for relapsed/refractory Hodgkin's lymphoma in recent years: a retrospective analysis of the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation.
- <u>Genadieva-Stavrik S</u> et al. <u>Ann Oncol.</u> 2016 Dec;27(12):2251-2257
- ≥ 3 lines 57%
 HLA sib 87%
- MUD 13%
- Previous HDC auto-SCT 55%
- At allo \rightarrow refractory 49%

NRM has significantly decreased

Daramatar	MAC	RIC	p-value	
Parameter	63	249		
Non relapse mortality	13%	12%	0.6	
Relapse	41%	52%	0.16	
Event free survival	48%	36%	0.09	
Overall survival	73	62	0.13	

Author	Year	Study design	No. patients	Donor source	Regimen	PFS	os	TRM
Alvarez	2006	Prospective	40	MRD	RIC	32% @	48% @	25% @ 1
71170102	2000	11050001100	10	MUD		2 years	2 years	year
Andorlini	nderlini 2005 Retrospective	40	MRD	DIO	37% @ 1,5 years (FM)	73% @ 1,5 years (FM)	5% @ 1,5 years (FM)	
Andernini		Renospective	40	MUD	RIC	21% @ 1,5 years (FC)	39% @ 1,5 years (FC)	22% @ 1,5 years (FC)
Anderlini	2008	Prospective	58	MRD MUD	RIC	32% @ 2 years	64% @ 2 years	15% @ 2 years
				MRD		2 years 23% @ 2 years (MRD)	53% @ 2 years (MRD)	2 years 21% @ 2 years (MRD)
Burroughs	Burroughs 2008 Retrospec	Retrospective	90	MUD HAPLO	NMAC	29% @ 2 years (MUD)	58% @ 2 years (MUD)	8% @ 2 years (MUD)
						51% @ 2 years (HAPLO)	58% @ 2 years (HAPLO)	9% @ 2 years (HAPLO)
Corradini	2007	Phase II	32	MRD	RIC	NR	32% @ 3 years	3% @ 3 years
Crocchiolo	2015	Retrospective	111	MRD MUD HAPLO UCB	MAC/NMAC/R IC	61% @ 3 years	68% @ 3 years	17% @ 3 years
Devetten	2009	Retrospective	143	MUD	NMAC/RIC	30% @ 1 year 20% @ 2 years	56% @ 1 year 37% @ 2 years	33% @ 2 years
Gajewski	1996	Retrospective	100	MRD	MA	15% @ 3 years	21% @ 3 years	NR
				UCB			UCB: 51% @ 2 years	UCB 11% at 100 days
Majhail	2006	Prospective	21	MRD	RIC			MRD 17% at 100 days

Author	Year	Study design	No. patients	Donor source	Regimen	PFS	OS	TRM
Marcais	2013	Retrospective	191	UCB MRD MUD	RIC	39% @ 3 years	63% @ 3 years	16% @ 3 years
Milpied	1996	Retrospective	45	MRD	MAC	15% @ 4 years	25% @ 4 years	48% @ 4 years
Peggs	2005	Prospective	49	MRD MUD	RIC	39% @ 4 years	56% @ 4 years	15% @ 2 years
Peggs	2007	Retrospective	67	MRD	RIC/DLI	39% @ 4 years (MF-A) 25% @ 4 years (MF)	62% @ 4 years (MF-A) 39% @ 4 years (MF)	7% @ 2 years (MF-A) 29% @ 2 years (MF)
Peggs	2011	Retrospective	76	MRD MUD	RIC	NR	64% @ 4 years	59% @ 4 years
Raiola	2014	Retrospective	26	HAPLO	NMAC	63% @ 3 years	77% @ 3 years	4% @ 2 years
Robinson	2002	Retrospective	188	MRD	RIC	46% @ 1 year	62% @ 1 year	year
			(52 HL)	MUD			50% @ 3 years	34.3% @ 2 years
Robinson	2009	Retrospective	285	MRD MUD	RIC	29% @ 4 years	25% @ 4 years	19% @ 1 year
Sarina	2010	Retrospective	185	MRD	RIC	31% @ 2 years	57% @ 2 years	12.7% @ 2 years
Sureda	2012	Phase II	92	MUD	RIC	24% @ 4 years	43% @ 4 years	15% @ 1 year
Thomson	2008	Phase II	38	MRD	RIC	42% @ 5 years	65% @ 10 years	13% @ 1 year

DONOR SOURCE	CONDITIONING	Timing of allo-SCT	
Match related donor \rightarrow MRD	Myeloablative	post HDC auto-SCT relapse	
Match unrelated donor \rightarrow MUD	Reduced intensity	refractory to 1 st salvage but sensitive to 2 nd salvage. NO previous HDC auto-SCT	
Partially mismatched related donor -> HAPLO	Non myeloablative	Refractory to salvage	
Umbilical cord →Cord blood	With or without DLI		
	With or without CTX post SCT		

Availability of financial resources in various health care systems

BV x16 vs allo

www.nature.com/bmt

SPECIAL REPORT Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015

A Sureda¹, P Bader², S Cesaro³, P Dreger⁴, RF Duarte¹, C Dufour⁵, JHF Falkenburg⁶, D Farge-Bancel⁷, A Gennery⁸, N Kröger⁹, F Lanza¹⁰, JC Marsh¹¹, A Nagler¹², C Peters¹³, A Velardi¹⁴, M Mohty^{15,17} and A Madrigal^{16,17} for the European Society for Blood and Marrow Transplantation


	Disease	Disease status	Sibling donor allo-HSCT	Well-matched URD allo-HSCT	Alternative donor allo-HSCT	ASCT
	HL	CR1 Chemosensitive relapse, no prior auto- HSCT	GNR/III D/III	GNR/III D/III	GNR/III GNR/III	GNR/I S/I
		Chemosensitive relapse, prior auto- HSCT	S/II	S/II	CO/III	CO/III
		Refractory	D/II	D/II	D/III	CO/III

Thank You

Thanks to all those who helped manage these patients

BMT clinic staff All oncology staff All the nurses involved Apheresis and Immunology lab

