

Hematopoietic Stem Cell Transplantation for Thalassemia Major

Alok Srivastava

Department of Haematology Christian Medical College Vellore, India

Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine

haematologica 2004; 89(10):October 2004

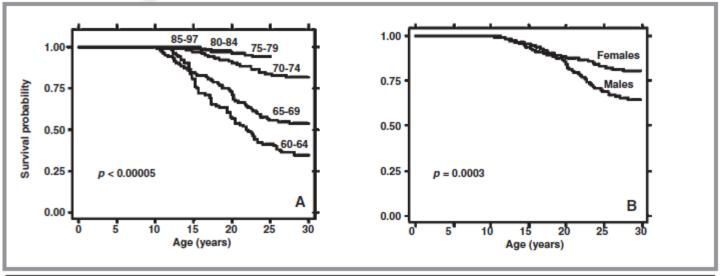
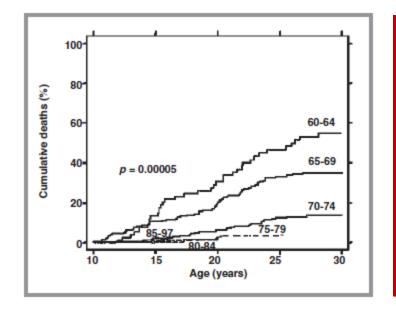
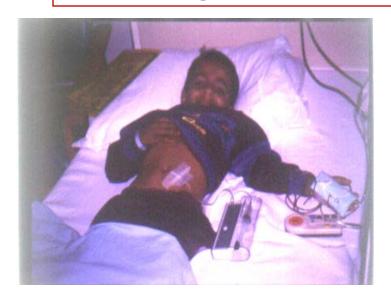



Figure 2. Kaplan-Meier survival curves, after the first decade of life, by birth cohort (A) and by sex (B).

Table 2. Distribution patients born after 19	of complicat 970.	ions affecting 720
Complication	N	%
HEART FAILURE	49	6.8
ARRHYTHMIA	41	5.7
DIABETES	46	6.4
HIV INFECTION	12	1.7
THROMBOSIS	8	1.1
Hypothyroidism	78	10.8
HYPOGONADISM*	273	54.7
*Only 499 patients were old en	ough to be assessed fo	r hypogonadism.

Medical management of Thalassemia Major in Developing countries

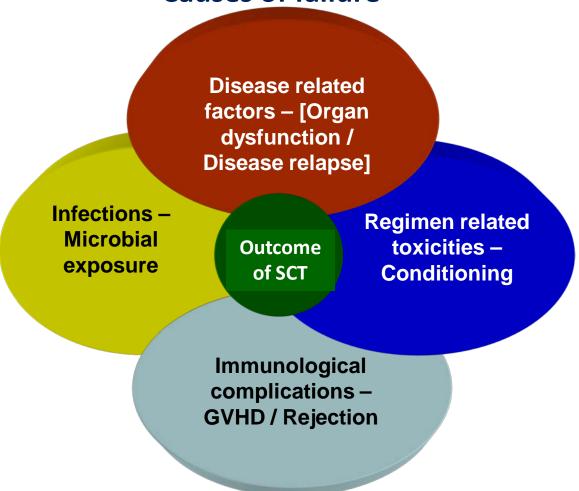

Transfusion

- Packed red cells to maintain Hb>9gm%
- Use leucodepletion filters

Chelation

- Initiate when ferritin is ~1000ng/ml
- Desferrioxamine 50mg/Kg SC CI / Deferasirox 20-40mg/kg PO / Deferiprone 75-100mg/kg PO
- Monitor ferritin

Challenges: Access / Compliance / Cost / Safety



Marrow Transplantation for Patients With Thalassemia: Results in Class 3 Patients Blood, Vol 87, No 5 (March 1), 1996: pp 2082-2088 **PROBABILITY** PROBABILITY 0.8 0.8 0.8 0.6 0.4 0.4 REJECTION NON-REJECTION MORTALITY 0.2 0.2 NON-REJECTION MORTALITY REJECTION 10 YEARS Stronger YEARS Milder 951 TRANSPLANTS IN THALASSEMIA conditioning conditioning AGE 1 THROUGH 35 YEARS 0.8 Probability 0.6 0.4 0.2 0 + Hematology 2003 15 20

YEARS

[~]First BMT for thalassemia major done in 1981

Stem Cell Transplantation for Thalassemia – Causes of failure

*HIGH INCIDENCE OF GRAFT REJECTION IN CLASS III PATIENTS (~35%)

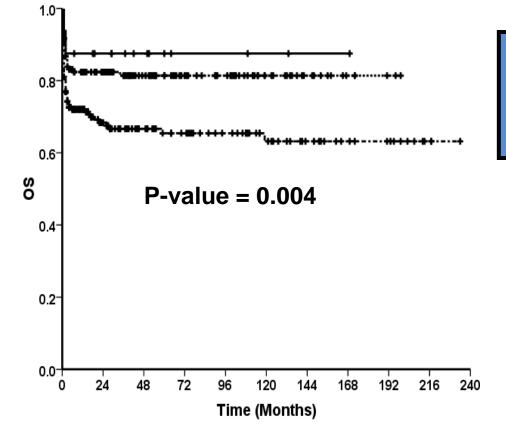
(42% rejection in the first 17 patients from India transplanted in Pesaro)

*HIGH INCIDENCE OF RRT - VOD / SOS (~30-40%)

BMT for Thalassemia Major - CMC Vellore

- Between October 1991 to December 2011
- Total No of Patients: 355
 - Median age 7 years (range: 2 24)
 - Males
 221 (62.3%)
 - BM graft 317 (89.3%)

Risk stratification:	n	<u>%</u>
> Class I	16	4.5
Class II	144	40.6
Class III	195	54.9


Liver size > 2cms	236 (66.5%)
Inadequate chelation	319 (89.9%)
Liver fibrosis	247 (69.6%)

BMT for Thalassemia Major - CMC Vellore

Survival:

Mean follow up 171 months
5 year KM estimate of overall survival
5 year KM estimate of event free survival

73.2 ± 2.5% 66.8±2.6%

Class II : n=14 : 87.5±8.3% Class II : n=144 : 81.4±3.3%

Class III: n=195: 65.4±3.7%

www.nature.com/bmt

Conditioning regimens

Randomized trial of two different conditioning regimens for bone marrow transplantation in thalassemia – the role of busulfan pharmacokinetics in determining outcome

M Chandy¹, P Balasubramanian¹, SV Ramachandran¹, V Mathews¹, B George¹, D Dennison², R Krishnamoorthy³ and A Srivastava¹

¹Department of Hematology, Christian Medical College, Vellore, India; ²Sultan Qaboos University Hospital, Muscat, Oman; and ³INSERM, U458, Hospital Robert Debre, Paris, France

- REGIMEN A [Bu600] busulfan 600 mg/m² given as four divided doses over 4 days and cyclophosphamide 200 mg/kg given over 4 days (50 mg/kg/day i.v over 1 h).
- REGIMEN B [Bu16] busulfan 16 mg/kg as 1 mg/kg/dose four times daily × 4 days, cyclophosphamide 200 mg/kg given over 4 days (50 mg/kg/day i.v over 1 h) and ALG (Pasteur Merieux) 30 mg/kg/day for 3 days.

*EVALUATE Bu KINETICS – CORRELATE WITH OUTCOME *REGULATORS OF Bu METABOLISM – GST/GSH LEVELS (HEPATIC / PLASMA) & GST POLYMORPHISM

Randomized trial of two different conditioning regimens for bone marrow transplantation in thalassemia – the role of busulfan pharmacokinetics in determining outcome

Table 3 Analysis of outcome in relation to busulfan dose

	Bu 600/Cy 200		Bu 16/Cy 200/ALG		P-value	
	n	(%)	n	(%)		
Overall survival	32	(68)	34	(47)	0.822	
Disease-free survival	32	(68)	30	(64)	0.828	
Follow-up (months) median	63	1-124	52	1-124	0.376	
Rejection	2	(4)	4	(9)	0.677**	
Mortality	15	(32)	13	(28)	0.652*	
Outcome by class						
Class II	n	=21	n	= 22		
Overall survival	17	(81)	19	(86)	0.698	
Disease-free survival	17	(81)	19	(86)	0.698	
Rejection	_		_		_	
Mortality	4	(19)	3	(14)	0.631	
Class III	n	=26	n	= 25		
Overall survival	15	(58)	15	(60)	1.000	
Disease-free survival	15	(58)	11	(44)	0.406	
Rejection	2	(10)	4	(22)	0.302	
Mortality	9	(35)	10	(40)	0.691	

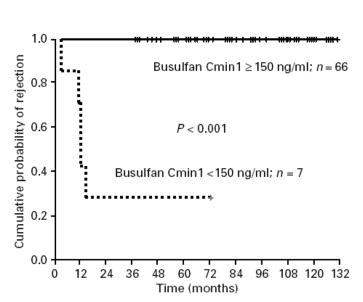


Figure 1 Probability of graft rejection depending on busulfan C_{\min} -1.

95% CI: *0.08, 0.16; **-0.17, 0.07.

doi:10.1182/blood-2003-11-3778 originally published online

Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation

Alok Srivastava, Balasubramanian Poonkuzhali, Ramachandran V. Shaji, Biju George, Vikram Mathews, Mammen Chandy and Rajagopal Krishnamoorthy

Table 2. Frequency of GSTM1 and GSTT1 genotypes in patients with and without HVOD

	GSTM1 null, n (%)	GSTM1 positive, n (%)	GSTT1 null, n (%)	GSTT1 positive, n (%)
HVOD-	23 (53.5)	58 (81.7)	28 (82)	53 (66.5)
HVOD+	20 (46.5)*	13 (18.3)*	6 (18) [†]	27 (33.5) [†]

Table 4. Busulfan pharmacokinetic parameters with reference to GSTM1 genotype

	Css-1, ng/mL	CI/F-1, L/h/kg
GSTM1 null	544 ± 184	0.40 ± 0.064
GSTM1 positive	667 ± 256	0.333 ± 0.071
P*	.001	.00001

Css-1 indicates steady-state concentration after the first dose of busulfan; and CI/F-1, clearance after the first dose of busulfan.

*P value calculated by 2-tailed t test.

Unpredictability of Intravenous Busulfan Pharmacokinetics in Children Undergoing Hematopoietic Stem Cell Transplantation for Advanced Beta Thalassemia: Limited Toxicity with a Dose-Adjustment Policy

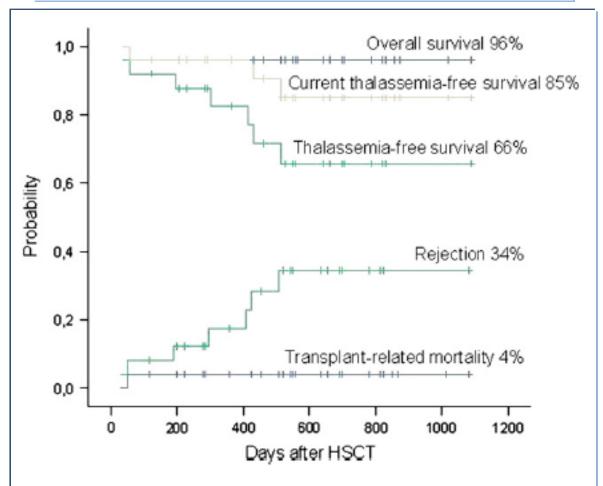


Figure 2. Kaplan-Meier probabilities of OS, DFS, current thalassemiafree survival, rejection, and TRM in 25 patients with class III thalassemia.

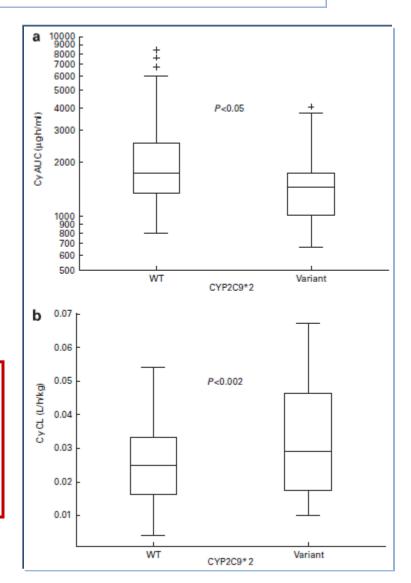
Busulfan PK in Thalassemia Major – Oral vs IV

Age	2-7 yrs	2-7 yrs	2-7 yrs
	n=100	n=41	n=16
Bu Dose	16 mg/kg oral	600mg/m2 oral	0.8 mg/kg IV
AUC1 (mg*h/L)	5.02 <u>+</u> 1.38	5.88 <u>+</u> 1.42	2.96 <u>+</u> 1.34
Cl (ml/min/kg)	3.58 <u>+</u> 1.08	4.6 <u>+</u> 1.16	6.62 <u>+</u> 5.01

IV Busulfan data using 'generic' Indian product

The oral Busulfan PK data is calculated using NONMEM software by population PK analysis (Carl Panetta, St Jude)

IV Bu PK data is calculated using trapezoidal rule


B Poonkuzhali, CMC Vellore (2010, unpublished)

Population pharmacokinetics of cyclophosphamide in patients with thalassemia major undergoing HSCT

P Balasubramanian^{1,4}, S Desire^{1,4,5}, JC Panetta^{2,4}, KM Lakshmi¹, V Mathews¹, B George¹, A Viswabandya¹, M Chandy^{1,6}, R Krishnamoorthy³ and A Srivastava¹

	mean (range)		
CY AUC (μg h/mL)	1858.8 (866-9445)	51	62
CY C _{max} (µg/mL)	637.6 (292-2664)	41	48
CY C _{min} (µg/mL)	6.7 (0.06 - 121)	92	103
CY t _{1/2} (h)	1.59 (0.54-4.2)	24	35
HCY AUC (µg h/mL)	5200 (953-22573)	45	24
HCY C _{max} (µg/mL)	1700 (250-6542)	49	33
HCY C _{min} (μg/mL)	0.019 (0.41 - 216)	114	58
HCY $t_{1/2}$ (h)	0.12 (0.02-0.19)	17	12
HCY AUC/CY AUC	2.8×10^{-3}	40	55
	$(4.1 \times 10^{-4} -$		
	1.6×10^{-2}		

*17-114% IIV and 12-103% IOV in CY and HCY PK parameters were observed.
*Body Wt and age were the main covariates
*CYP2C9*2 explained a significant portion of the IIV in the clearance

Population pharmacokinetics of cyclophosphamide in patients with thalassemia major undergoing HSCT

P Balasubramanian^{1,4}, S Desire^{1,4,5}, JC Panetta^{2,4}, KM Lakshmi¹, V Mathews¹, B George¹, A Viswabandya¹, M Chandy^{1,6}, R Krishnamoorthy³ and A Srivastava¹

Table 3.	Comparison of CL (clearance)	(L/h/m²) in child	dren receiving myeloabl	ative doses of CY
----------	------------------------------	-------------------	-------------------------	-------------------

Group	No. of cases	Disease	Age (years) Median (range)	CY CL (L/h/m²)
Qiu et al. ^{30a} Chinnaswamy et al. ¹¹ Yule et al. ⁴³	8 11 38	Leukemia Rhabdomyosarcoma	11.2 (2.8-15.9) 12.8 (5.4-21)	2.56 (1.69-3.95) 3.02 (2.3-4.0) 2.9 (1.2-10.6)
Present study	55	Thalassemia	7.3 (2-14)	0.55 (0.12-1.43)

^aCY PK data from pediatric patients included in the study were requested from investigators and obtained.

Table 4. Comparison of CY and HCY pharmacokinetic parameters between this study and previous studies using BU/CY-conditioning regimen for HSCT

Group	No. of cases	Disease	Age (years) median (range)	BU dose (mg/kg)	Total CY dose (mg/kg)	CY C _{max} (μg/mL)	CY t _{1/2} (h)	CY AUC (μgh/mL)	HCY C _{max} (μg/mL)	HCY t _{1/2} (h)	HCY AUC (μg h/mL)	Ratio HCY/CY
Hassan et al. ²⁰	12	CML/AML	37 (5-51)	16	100 - 120	390 ± 223	10.9 ± 2.9	1913 ± 1019	1.14±0.54	8.14 ± 0.25	8.34 ± 2.13	0.0053± 0.002
Slattery et al. ¹⁹	7	BrCa/AML	42 (12 • 52)	Variable	120 - 200	227 ± 56	2.36 ± 0.37	861 ± 172	-	2.19 ± 0.74	-	0.123± 0.036
McCune et al.17	75	MDS/AML/	47 (20 - 66)	Variable ^a	120	87.1 ± 48	_	715 ± 332	10.2 ± 5.3	_	8.5 ± 2.9	0.011
Present	55	Thalassaemia	7.3 (2-14)	16	200	723 ± 375	1.73 ± 0.5	2276 ± 1585	1.98 ± 1.1	0.13 ± 0.024	6.04 ± 3.3	0.0037 ± 0.0032
study P-value 1 vs 4		major	0.0001			0.004	0.000	0.452	0.013	0.0001	0.024	0.102
P-value 2 vs 4			0.0001			0.001	0.002	0.022	_	0.0001	_	0.0001
P-value 3 vs 4			0.0001			0.0001	_	0.0001	0.0001	-	0.0001	0.0001

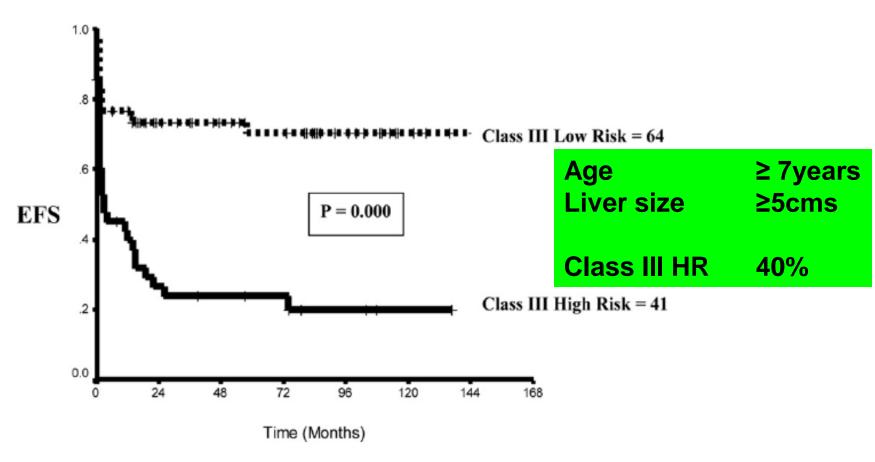
Abbreviations: AUC = area under the concentration curve; BrCa = breast cancer; HCY = hydroxy CY. P-values generated using two-tailed t-test. These patients received targeted BU doses.

HSCT for Thalassemia Major

*Extensive PK and PG evaluation of Busulfan and Cyclophosphamide.

*Elaborate assessment of immunological aspects of graft composition and post-engraftment recovery

*Not a major impact on outcome of high risk patients

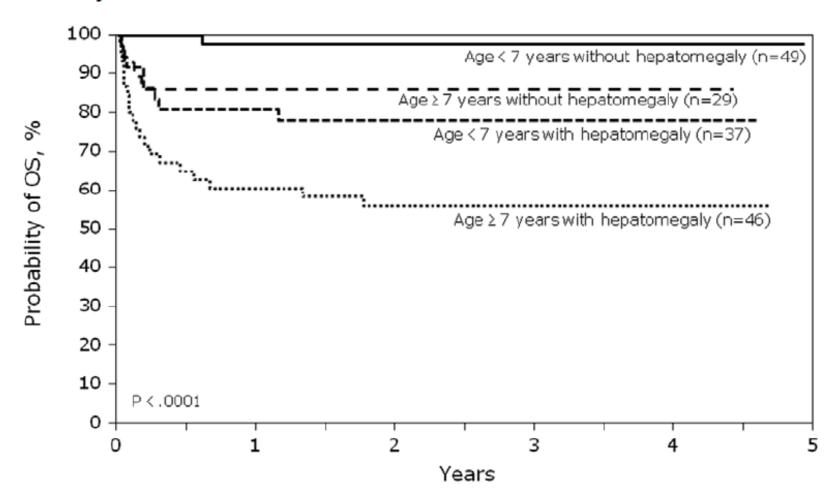

BMT for Thal Major - CMC Vellore Risk Stratification - Limitations

 Class III a heterogeneous group (in the setting of sub optimal medical therapy prior to transplant)

	Patient I	Patient II
Liver size	3 cms	7cms
Inadequate chelation	+	+
Fibrosis	+	++
Age	6 years	14 years
Spleen size	NP	5 cms

A New Stratification Strategy That Identifies a Subset of Class III Patients with an Adverse Prognosis among Children with β Thalassemia Major Undergoing a Matched Related Allogeneic Stem Cell Transplantation

Biology of Blood and Marrow Transplantation 13:889-894 (2007)


L Comparison of 5-year EFS of Class III transplants in the high-risk group (n = 41) and rest of transplants in Class III (n = 64).

2011 117: 1745-1750

doi:10.1182/blood-2010-09-306829 originally published

online November 30, 2010

HLA-matched sibling bone marrow transplantation for β-thalassemia major

Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan

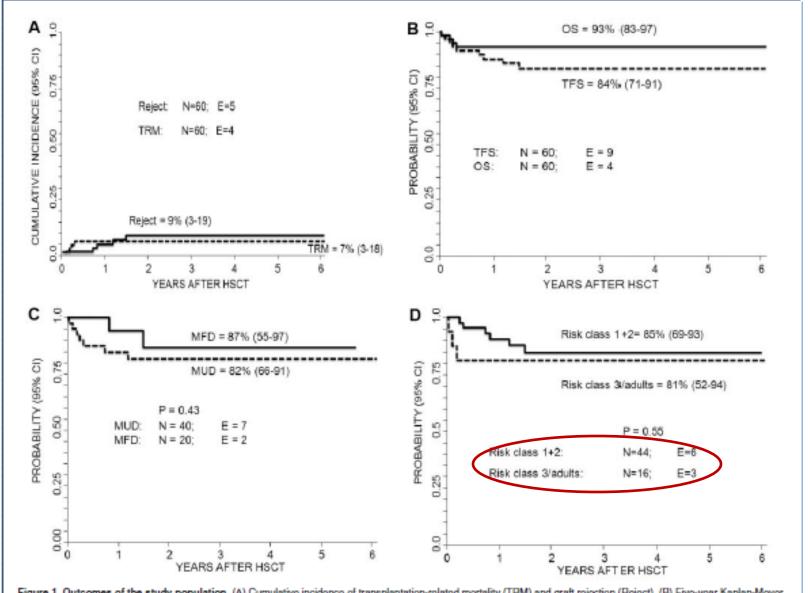
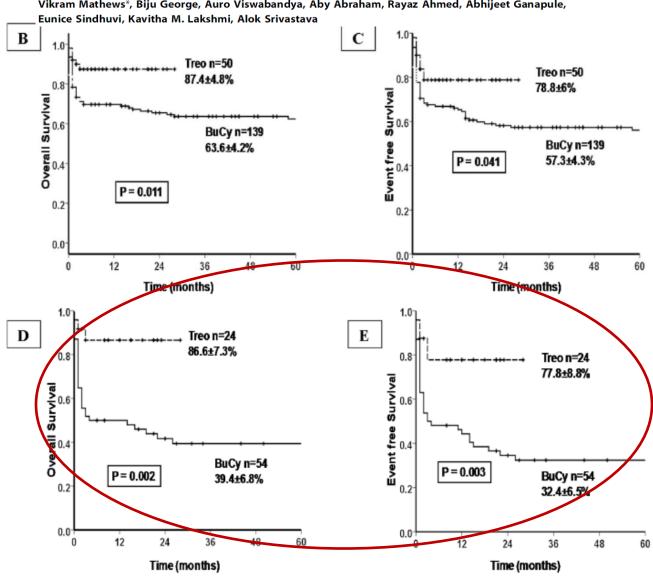



Figure 1. Outcomes of the study population. (A) Cumulative incidence of transplantation-related mortality (TRM) and graft rejection (Reject). (B) Five-year Kaplan-Meyer estimate of overall survival (OS) and TFS for the whole cohort of patients. (C) Five-year Kaplan-Meyer estimate of TFS according to the type of donor used (MFD indicates matched family donor; and MUD, matched unrelated donor). (D) Five-year Kaplan-Meyer estimate of TFS according to the patient's class of risk.

Improved Clinical Outcomes of High Risk β Thalassemia Major Patients Undergoing a HLA Matched Related Allogeneic Stem Cell Transplant with a Treosulfan Based Conditioning Regimen and Peripheral Blood Stem Cell **Grafts** PLOS ONE April 2013 | Volume 8 | Issue 4 | e61637

Vikram Mathews*, Biju George, Auro Viswabandya, Aby Abraham, Rayaz Ahmed, Abhijeet Ganapule,

Treosulfan based conditioning for Thalassemia Major

- *Better toxicity profile Larger therapeutic window
- *Higher incidence of mixed chimerism requiring manipulation of post HSCT immunosuppression / DLI
- *Major impact on outcome of high risk patients
- *Limited data on PK so far
- *Cost a major limitation

*Generic Treosulfan – received conditional approval from DCGI

*Subject to PK data being submitted – Study being initiated to be completed over the next 4-6 months

2012 120: 3875-3881 doi:10.1182/blood-2012-03-417998 originally published online September 11, 2012

A novel conditioning regimen improves outcomes in β -thalassemia major patients using unrelated donor peripheral blood stem cell transplantation

Chunfu Li, Xuedong Wu, Xiaoqing Feng, Yuelin He, Huaying Liu, Fuyu Pei, Jianyu Liao, Lan He, Lei Shi, Na Li, Qiujun Liu, Shiting Liu, Geyu Chen, Qingxia Su, Yuqiong Ren, Yanhua Wang and Wanxia Tan

Cyclophos: 55mg/kg/day days -10, -9

Busulfan: 2.8-4.4mg/kg/day days -8 to -6

Thiotepa: 10mg/kg/day day -5

Fludarabine: 40mg/m²/day days -8 to -4

Table 1. NF-index of categorization of NF-08-TM

Group	p Ferritin	Hepatomegaly	Age, y
I	< 3000 μg/L	< 2.5 cm under the costal margin	< 4
II	Neither group I nor group III		
Ш	> 5000 µg/L	> 4 cm	> 8

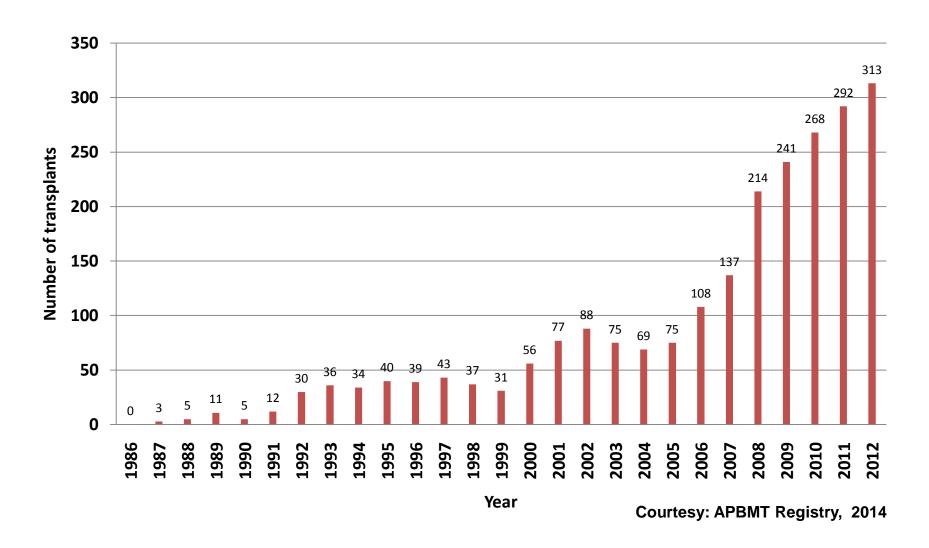
Table 4. Clinical outcome according to transplant groups

	MSD-HSCT	UD-PBSCT	Total	P
Engraftment, median day (range)*				
ANC > 500/mm ³	17.5 (12-30)	19 (11-26)	19 (11-30)	.230
PLT > 20 × 10 ³ /mm ³	17 (9-56)	15.5 (9-42)	16 (9-56)	.344
Hgb > 8.0 g/dL	13 (2-42)	13 (6-28)	13 (2-42)	.073
Duration of ANC < 500/mm ^a	18 (1-33)	22 (13-32)	21 (1-33)	.010
Acute GVHD				
Grade III-IV (%)	1 (3.6)	5 (9.6)	6 (7.5)	.328
Transplantation-related complications				
HC (%)	3 (10.7)	9 (17.3)	12 (15.0)	.431
CMV reactivation (%)	9 (32.1)	22 (42.3)	31 (38.8)	.373
VOD (%)	3 (10.7)	2 (3.8)	5 (6.3)	.226
Mucositis (%)	10 (35.7)	33 (63.5)	43 (53.8)	.018
IFD (%)	1 (3.6)	5 (9.6)	6 (7.5)	.328
Results of transplant				
OS (at 3 y)	.900	.923	.915	.678
TFS (at 3 y)	.833	.904	.878	.309
TRM (at 3 y)	.100	.077	.085	.679
GR (at 3 y)	.069	.019	.037	.259

All patients received Azathioprine / Hydroxyurea from day -45

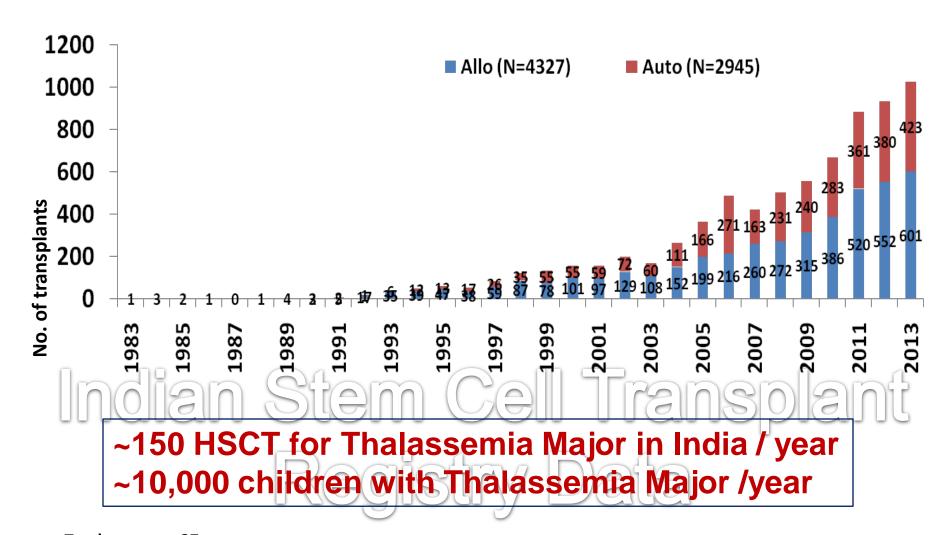
Stem cell transplant for thalassemia major:

1.Only curative treatment for thalassemia major that is standard of care


2. Results have improved over last 10-15 years

- Low risk patients: 85-95% survival
- High risk patients: 70-80% survival (?)
- → These are the best results not universal experience

3. Many challenges

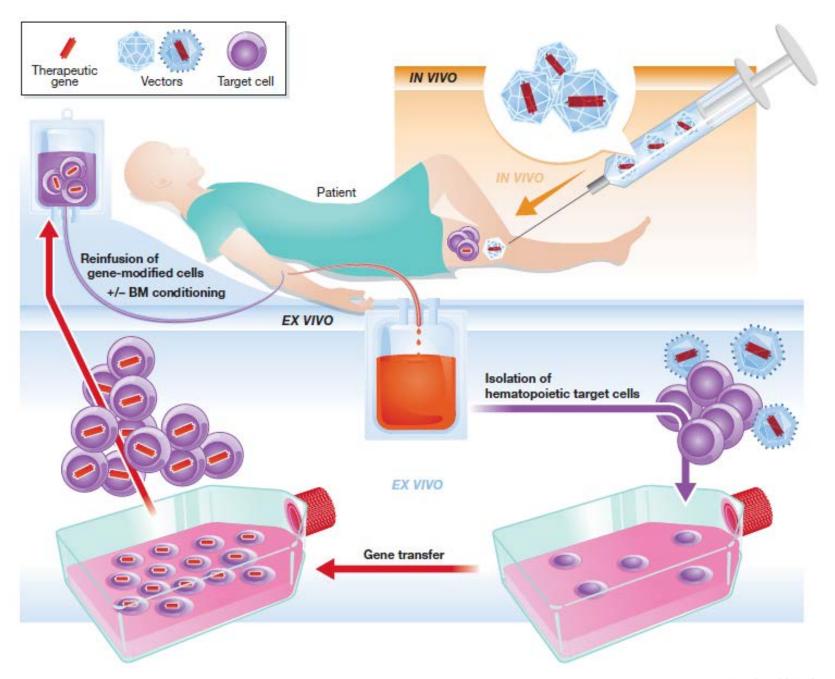

- Risk stratification
- Conditioning regimen and RRT
- Suitable donor Matched / mismatched
- Immunological complications GVHD / Rejection
- Geographic variabilities
- 4. Impact of co-existing morbidities

APBMT Registry - HSCT for Thalassemia Major

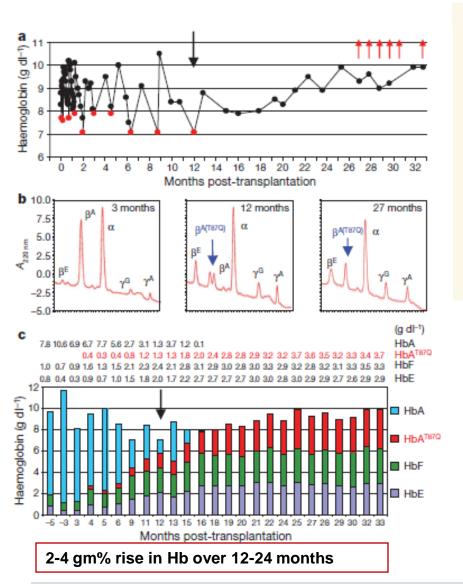
INDIAN STEM CELL TRANSPLANT REGISTRY

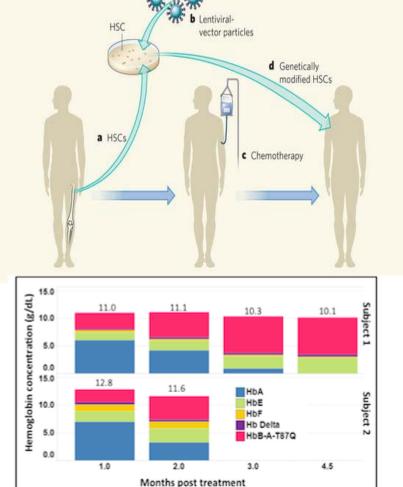
Number of Transplants – India (N=7242)

Total centers – 37 centers


Data submitted - 33 centers

What is gene therapy?


 Gene Therapy - technique that uses genes as a means of treatment and/or prevention of a particular disease caused by genetic defects


• Includes:

- -Replacing a mutated gene with a healthy copy,
- -Inactivating a mutated gene
- -Introducing a new gene into the body
- Technology of molecular genetics /cellular biology made this possible from the 1980's insert a gene into the cell
- First gene therapy done at NIH, USA in 1990 for SCID

Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia

Subject 2: producing 4.2 g/dL of β^{A-T87Q} -globin at 2 months

EHA 2014

Cure for Major Hemoglobin Disorders

- *Increasing number of HSCT → With good results
- *Continued thrust on enhancing access
- *The focus should also be on reducing long term complications (LTC)
- *For best results several steps needed:
 - -Good transfusion chelation before HSCT
 - -Early HSCT (2-5 years of age), before 7 years
 - -Reduce HSCT related LTC: Safer conditioning
 - -Early and planned attention to post HSCT iron chelation / immunization / growth monitoring
 - *Initiate an effective control program
 *Work towards successful gene therapy!

Acknowledgements

CMC, Vellore

Dr. Vikram Mathews

Dr. Biju George

Dr. Auro Viswabandya

Dr. Aby Abraham

Dr. Abhijeet G

Dr. Fouzia NA

Dr. Poonkuzhali B

Dr. Shaji R.V.

Ms. M.L. Kavitha

Patients and families

Hospital Robert Debre, Hospital St. Louis, Paris

Dr. R. Krishnamoorthy

Dr. Evelyn J. Aigrain

Dr. D. Charron

Dr. R. Tamouza

Funding agencies

ICMR: 1994-1999

CEFIPRA: 2001-2004

DBT: 2007- 2010

