## Ways to gain experience, training abroad, twinning with other institutes, internet, telemedicine, and others



Mohamed A. Kharfan-Dabaja, MD, MBA, FACP Professor of Oncologic Sciences Moffitt Cancer Center January 16, 2017 4<sup>th</sup> WBMT Workshop Riyadh, Kingdom of Saudi Arabia



## Outline

- Hematopoietic cell transplantation activity
  - Here to stay
  - Becoming more complex
- Experience, training abroad
  - Focused based on needs
- Studies needed to develop national/regional data
  - Local-regional and international collaboration
- Twinning/networking
- Internet of things/telemedicine



### One million haemopoietic stem-cell transplants: a retrospective observational study



Alois Gratwohl, Marcelo C Pasquini, Mahmoud Aljurf, Yoshiko Atsuta, Helen Baldomero, Lydia Foeken, Michael Gratwohl, Luis Fernando Bouzas, Dennis Confer, Karl Frauendorfer, Eliane Gluckman, Hildegard Greinix, Mary Horowitz, Minako Iida, Jeff Lipton, Alejandro Madrigal, Mohamad Mohty, Luc Noel, Nicolas Novitzky, José Nunez, Machteld Oudshoorn, Jakob Passweg, Jon van Rood, Jeff Szer, Karl Blume†, Frederic R Appelbaum, Yoshihisa Kodera, Dietger Niederwieser, for the Worldwide Network for Blood and Marrow Transplantation (WBMT)



Gratwohl et al. Lancet Haematol. 2015 Mar;2(3):e91-100

# Annual Number of Transplant Recipients in the US by Transplant Type





\*2014 Data incomplete 3

# Allogeneic Transplant Recipients in the US, by Donor Type





\*2014 Data incomplete 4

### Impending Challenges in the Hematopoietic Stem Cell Transplantation Physician Workforce

James L. Gajewski,<sup>1</sup> C. Frederick LeMaistre,<sup>2</sup> Samuel M. Silver,<sup>3</sup> Michael C. Lill,<sup>4</sup> George B. Selby,<sup>5</sup> Mary M. Horowitz,<sup>6</sup> J. Douglas Rizzo,<sup>7</sup> Helen E. Heslop,<sup>8</sup> Claudio Anasetti,<sup>9</sup> Richard T. Maziarz<sup>1</sup>

| Age<br>Range, Years | All BMT<br>Physicians, % | Adult BMT<br>Physicians, % | Pediatric BMT<br>Physicians, % |
|---------------------|--------------------------|----------------------------|--------------------------------|
| 70-78               | 1.6                      | 1.8                        | 0                              |
| 65-69               | 3.1                      | 3.5                        | 0                              |
| 60-64               | 10.2                     | 11.7                       | 2.4                            |
| 55-59               | 3.6                      | 14.8                       | 6.5                            |
| 50-54               | 21.2                     | 21.5                       | 18.7                           |
| 45-49               | 18.6                     | 20.0                       | 12.2                           |
| 40-44               | 17.1                     | 15.1                       | 28.5                           |
| 34-39               | 14.6                     | 11.6                       | 31.7                           |
| All ages            | 100                      | 100                        | 100                            |

#### Table 2. Age of BMT Physicians

#### Table 3. Estimated Supply and Demand of BMT Physicians

|                                       | Adult BMT<br>Physicians, n | Pediatric BMT<br>Physicians, n | All BMT<br>Physicians, n |
|---------------------------------------|----------------------------|--------------------------------|--------------------------|
| BMT physician requirements<br>in 2020 | 1991                       | 235                            | 2226                     |
| Current supply                        | 959                        | 156                            | 1115                     |
| Projected retirements                 | 232                        | 15                             | 247                      |
| New BMT physicians needed             | k 1264                     | 94                             | 1358                     |

Data derived, with permission (R. Krawisz, personal communication, June 2009), from the ASBMT membership records.

Data derived, with permission (R. Krawisz, personal communication, June 2009), from the ASBMT membership records.

#### Gajewski JL, et al. Biol Blood Marrow Transplant. 2009; 15: 1493-1501

# **Training & experience needed**

- Access to allogeneic HCT has expanded with the advent of reduced-intensity/non-myeloablative allografting
  - Patients of more advanced age
  - With comorbidities

A real challenge

- Also,
  - Pool of HLA compatible unrelated donors
    - Not easily accessible to developing countries
  - Haploidentical transplantation
    - One child per family in China
    - Cost
  - Benign hematologic disorders (Sickle Cell Disease, Thalassemias, etc.)



## Life expectancy at birth, male (years)



Source: data.worldbank.org (accessed Dec 27, 2016)

### Life expectancy: selected countries

| Country                  | 1960<br>(years of age) | 2014<br>(years of age) |
|--------------------------|------------------------|------------------------|
| Algeria                  | 46                     | 73                     |
| Central African Republic | 35                     | 49                     |
| China                    | 42                     | 74                     |
| Colombia                 | 55                     | 70                     |
| India                    | 42                     | 67                     |
| Japan                    | 68                     | 84                     |
| Lebanon                  | 62                     | 78                     |
| Saudi Arabia             | 44                     | 73                     |
| United Arab Emirates     | 50                     | 76                     |
| United Kingdom           | 68                     | 79                     |
| United States of America | 67                     | 77                     |

Source: data.worldbank.org (accessed Dec 27, 2016)

# Trends in Autologous Transplants by Recipient Age\*



# Trends in Allogeneic Transplants by Recipient Age\*



www.nature.com/bmt

#### Review

### Transplant center characteristics and clinical outcomes after hematopoietic stem cell transplantation: what do we know

FR Loberiza Jr<sup>1</sup>, DS Serna<sup>1</sup>, MM Horowitz<sup>1,2</sup> and JD Rizzo<sup>1,2</sup>

<sup>1</sup>International Bone Marrow Transplant Registry, Health Policy Institute, Medical College of Wisconsin, Milwaukee, WI, USA; and <sup>2</sup>Division of Neoplastic Diseases and Related Disorders, Department of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA

- Outcomes may vary among patients with similar disease biology and treatment
- Center effect entails differences in outcome among centers presumed to be due to differences in the way health care is delivered:
  - Training and experience of personnel
  - Resources available
  - Organization



| Studies             | Year | Selection                                                 | <i>Center effect</i><br><i>variable studied</i> | Outcome studied                                  | Results                                           |
|---------------------|------|-----------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| Horowitz et al      | 1992 | Leukemia<br>Early stage<br>HLA-identical sibling          | Procedure<br>Volume ≤5/yr                       | Relapse<br>TRM 1.5X TRM<br>DFS                   | Not significant<br>Significant<br>Significant     |
| Hows et al          | 1993 | Leukemia<br>MDS<br>SAA<br>All stages<br>Unrelated donor   | Procedure <2/yr<br>Volume URD                   | Engraftment<br>Acute GVHD ↓ OS<br>Survival       | Not significant<br>Not significant<br>Significant |
| Frassoni et al      | 2000 | Leukemia<br>Early stage<br>HLA-identical sibling          | Procedure<br>Volume<br>Center<br>Experience     | Relapse<br>TRM<br>DFS                            | Not significant<br>Significant<br>Significant     |
| Matsuo et al        | 2000 | Leukemia<br>All disease stage<br>All donors               | Procedure<br>Volume <25/7yr<br>URD              | 100-day survival<br>DFS ↑ death<br>Survival risk | Significant<br>Significant<br>Significant         |
| Matsuo <i>et al</i> | 2000 | MDS<br>Lymphoma<br>SAA<br>All disease stage<br>All donors | Procedure<br>Volume                             | 100-day survival<br>Survival                     | Not significant<br>Not significant                |

 Table 2
 Studies primarily looking at the center effects in hematopoietic stem cell transplantation setting

Modified from Loberiza et al. Bone Marrow Transplant. 2003; 31: 417-21



### Focused training: assess your needs

- What is the expertise needed?
  - Clinical (BMT, Pathology, Radiation Oncology, ID, ICU)?
  - Pharmacy?
  - Nursing?
  - Stem cell processing/procurement?
  - Database management and maintenance?
  - Others?
- Where is it available?
  - For example, allo-HCT for Thalassemia (Italy, India, etc.)
- Are the imported algorithms applicable to your current practice setting?
  - Adjustment/tuning
  - Establishing new standards of care (late effects/survivorship)
  - Updating is constantly needed
- Resources needed/Cost (sustainability)



# **Define training needs**

- Disease specific?
  - Thalassemia, Sickle Cell, BM failure syndromes
- Procedure-specific?
  - Develop a haploidentical transplant program
  - Cord blood program
- High-risk population?
  - Septuagenarians?
- Cell processing specific?
- LTFU/survivorship clinic?
- Others



## Focused training: i.e. Thalassemia

- Understanding specific risks of the procedure to particular diseases
  - Age of the patient
  - Is there liver fibrosis? How bad?
  - Is hepatomegaly present? How bad?
  - Other organs: heart? Lungs?
- Allogeneic HCT can be successful in over 80% of <u>low-risk</u> cases



### Focused training: Thalassemia



Figure 3 BMT at for thalassemia, compared with other indications. Christian Medical College Hospital, Vellore (October 1986–December 2006).

 Table 3
 Outcome of allogenic BMT for thalassemia Christian

 Medical College Hospital, Vellore (5-year Kaplan–Meier estimate of overall survival and EFS)

| Class        | Number | Survival (%)     | EFS (%)          | Rejection (%) |
|--------------|--------|------------------|------------------|---------------|
| All patients | 218    | $72.3 \pm 3.1$   | $65.3 \pm 3.3$   | 14.6          |
| Class I      | 15     | $71.8 \pm 11.98$ | $71.8 \pm 11.98$ | 0             |
| Class II     | 89     | $82.6 \pm 4.1$   | $78.3 \pm 4.4$   | 12.4          |
| Class III    | 114    | $64.5 \pm 4.6$   | $54.6 \pm 4.8$   | 18.4          |

| Risk groups | OS    | DFS   |
|-------------|-------|-------|
| Class 1 & 2 | 96.7% | 80%   |
| Class 3     | 65.2% | 54.5% |
| All         | 79.3% | 65.8% |

Unrelated BMT transplantation for beta-thalassemia: the experience of the Italian Bone Marrow Transplant Group

Chandy et al. Bone Marrow Transplantation. 2008; 42:S81-84 La Nasa et al. Ann NY Acad Sci. 2005; 1054: 186-95



### Resources



#### India (Jaipur)

#### A STOP Thalassemia project

- Cure2Children's (C2C) team of 6 volunteer doctors and 4 specialist nurses on rotation, worked "hands-on" with the local medical team for 6weeks, while simultaneously preparing the facility itselff
- In February of 2012, the local medical team conducted its 1<sup>st</sup> BMT
- All of the center's first transplanted children are doing well

#### http://www.cure2children.org/project/jaipur-india

## Haploidentical transplantation: why?



Source: http://brilliantmaps.com/fertility-rates/

- Declining fertility rates
- Smaller families
- Cost (?)

### Haploidentical transplantation: why?



#### Figure 1. Match Likelihoods According to Racial and Ethnic Group and Age.

The likelihood of finding a match with the use of a search strategy in which an 8/8 HLA-matched donor is sought first, then a 7/8 HLA-matched donor, and thereafter a cord-blood unit with an adequate cell dose is shown.

#### Graget et al. N Engl J Med 2014;371:339-48.

### **Importance of registries**

Bone Marrow Transplantation (2008) 42, S1–S2 © 2008 Macmillan Publishers Limited All rights reserved 0268-3369/08 \$30.00

www.nature.com/bmt

#### REVIEW

# The role of registries in facilitating clinical research in BMT: examples from the Center for International Blood and Marrow Transplant Research

MM Horowitz

Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA

- Observational databases facilitate research into HCT outcomes (CIBMTR, EBMT, others)
  - Address questions difficult to answer through clinical trials
    - Analyze trends
    - Vast volume
  - Platform to design and develop prospective clinical trials



## **Develop own databases/registries**

- Allows to analyze outcome trends in own population
  - Identify gaps where new strategies are needed
    - Disease related
    - Supportive care
    - Center specific
    - Others
  - Use as benchmark for developing future prospective studies
    - Attract large pharma-sponsored studies to your part of the world
- Compare your outcomes to those of other transplant registries
  - Collaboration
  - Potential to improve publication output (quality and quantity)



### **Networking and twinning**





### International networks

- Fosters development of regional networks among international partners and collaborators
- Moves beyond one-on-one partnership approach
  - Promotes self-sufficiency and sharing of expertise among international sites
  - Accelerate global improvements in clinical care of children with cancer and other life-threatening diseases

www.stjude.org/global/international-outreach/international-networks.html



- International networks
  - AHOPCA: The Asociación de Hemato-Oncología Pediátrica de Centro América
    - Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Dominican Republic and Panama
  - POEM: Pediatric Oncology East and Mediterranean Group
    - Armenia, Bahrain, Egypt, India, Iraq, Iran, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Saudi Arabia, Syria, Tunis, Turkey, United Arab Emirates and Yemen

### National Childhood ALL Study Group in China

20 major centers in China are participating

<u>www.stjude.org/global/international-outreach/international-networks.html</u>

# **International partnership**



St. Jude Children's Research Hospital

| Eastern Mediterranean   |                  |                                                               |
|-------------------------|------------------|---------------------------------------------------------------|
| JORDAN<br>(Amman)       | Medical Facility | King Hussein Cancer Center<br>Year Program Initiated: 1996    |
|                         | Foundation       | King Hussein Cancer Center Foundation                         |
| LEBANON<br>(Beirut)     | Medical Facility | American University of Beirut<br>Year Program Initiated: 2000 |
|                         | Foundation       | Children's Cancer Center of Lebanon                           |
| MOROCCO<br>(Casablanca) | Medical Facility | Hôpital 20 Aout 1953<br>Year Program Initiated: 2000          |
|                         | Foundation       | Agir, Association Marocaine de Soutien Aux Malades du Sang    |
| MOROCCO<br>(Rabat)      | Medical Facility | Hôpital d'Enfants<br>Year Program Initiated: 2000             |
|                         | Foundation       | L'Avenir, Association des Parents et Amis de Enfants          |

ww.stjude.org/global/international-outreach/international-partnerships.html



A prospective international cooperative information technology platform built using open-source tools for improving the access to and safety of bone marrow transplantation in low- and middle-income countries

Rajat Kumar Agarwal, <sup>1</sup> Amit Sedai, <sup>1</sup> Sunil Dhimal, <sup>1</sup> Kumari Ankita, <sup>1</sup> Luigi Clemente, <sup>2</sup> Sulman Siddique, <sup>2</sup> Naila Yaqub, <sup>3</sup> Sadaf Khalid, <sup>3</sup> Fatima Itrat, <sup>3</sup> Anwar Khan, <sup>3</sup> Sarah Khan Gilani, <sup>3</sup> Priya Marwah, <sup>4</sup> Rajpreet Soni, <sup>4</sup> Mohamed El Missiry, <sup>2</sup> Mohamed Hamed Hussain, <sup>2</sup> Cornelio Uderzo, <sup>2</sup> Lawrence Faulkner<sup>2</sup>

### Jagriti innovations (Bengaluru, Karnataka, India)

- Tailored solutions for complex workflows and business applications
- Developed a collaboration tool in partnership with the Cure2Children Foundation
   Cure2Children
   WHO WE ARE OUR PROJECTS OUR NEWS GET INVOLVED
- Used by health professionals in Italy, Pakistan, and India for the collaborative management of BMT patients who received the procedure for Thalassemia major since Aug. 2008
- Online open access database covers data recording, analyzing, and reporting besides enabling knowledge exchange, telemedicine, capacity building, and quality assurance

<u>Agarwal RK, et al. J Am Med Inform Assoc 2014;21:1125–1128</u> <u>www.jagriti.co.in</u>



"Change is the law of life. And those who look only to the past or the present are certain to miss the future"

### President John F. Kennedy

May 29, 1917-Nov 22, 1963



### **Telemedicine**



Doctors are linking up with patients by phone, email and webcam. But some critics question whether the quality of care is keeping up with the rapid expansion of telemedicine. Illustration: C.J. Burton for The Wall Street Journal

By MELINDA BECK

June 26, 2016 10:10 p.m. ET

#### THE WALL STREET JOURNAL.

# THE WALL STREET JOURNAL.

# Telemedicine is transforming healthcare

- It is already here
- It is facilitating
  - Physician ↔ Patient communication
  - Physician ↔ Physician communication
- Allows better care where medical expertise is unavailable

The number of virtual doctor visits in the U.S.





Beck M. Wall Street Journal. June 26, 2016

### Telemedicine

- Telemedicine is spreading rapidly
  - >15 million Americans received some kind of medical care remotely in 2015, according to the American Telemedicine Association. Numbers expected to grow by <u>30%</u> in 2016

- Challenges remain
  - Is quality being sacrificed for convenience?
  - Consulting random doctors
    - Continuity of care?
  - Licensing and regulations across state/provincial/country/continent lines
  - Privacy rules (not clearly defined doctor-patient relationship)

Beck M. Wall Street Journal. June 26, 2016



# Telemedicine in Hematopoietic Cell Transplantation

### Institution-to-institution

- Virtual meetings
  - Tumor board: discuss indications/eligibility for procedure
  - Review of Radiology/EKG
  - Pathology/Cytology: GVHD diagnosis, challenging diagnoses

### Patient-to-physician

- Real time access to information regarding changes in clinical condition
- Potential to improve compliance with prescribed therapies
- Surveillance



### Telemedicine in HCT: Institution-toinstitution

- Ultimate goal is to share knowledge to:
  - Improve patient care
    - By developing modern treatment algorithms
    - Optimizing SOPs
  - Foster research collaborations
    - Enhance access to new therapies as part of clinical trials
    - Develop databases
      - Assess outcomes periodically
      - Identify gaps where change/improvement is needed
  - Enhance operational efficacy
    - Cost containment



# **Closing remarks**

- Effective training requires clear understanding of the center needs
  - Focused
  - Continuous self-assessment
  - Twinning and networking
- Eventually move from passive learning → knowledge sharing
- Technology has made the world flat
  - Universal and easy access to available knowledge
  - Integrate technology to enhance and expand all aspects of care





### Thank you

### Gracias

### Grazie

### Obrigado

### Danke

### ありがとうございました

Merci

