HSCT for Thalassemia Major

Have Transfusion 1. Have transplantation or or Half transplantation2. Have transplantation

Said Yousuf Mohamed, Professor of Internal Medicine , H.O.T Ain Shams University Hospital, Cairo, Egypt SCA-Transplant program, KFSHRC, Riyadh, SA • No science.

T.M is 4-mos old 1st boy for a 42 y/o mother and a 58y/o father.
He feels SOB and choking with breast feeding.
o/E: Pallor, jaundice, HSM.
CBC/DD & Hb EP: hypochr. Microcyt. anemia (7 gm), retic 11%,
HbEP: A2 is 5.2%, Hb F: 7%, Hb
Well: he's like his cousin who required Transfusions but died at the age of 4

Mother:

- 1. Is it benign or malignant?
- 2. Does it kill like acute leukemia (ALL)?
- 3. I wished he will be a doctor! And Marry !
- 4. Is he going die like his cousin?
- 5. How can you **US**?

It depends !!!!!

Academic center

Do EBM (not EBMT) Do Research Do Publish

Believe what they publish &what similar others publish

If he dies before he goes, No one would know...... That TM made him Go !

We have to be realistic

Thalassemia major: what a disease

Intelligent but this may be his skull

he will be an artist : draws picture about his life

When may he die?

Borgna-Pignatti C et al., ann NY acad SCI 2005

[haematologica] 2004;89:1179-1186

DANIELE PRATI

Proportion of patients with a

С А B S R А ower ŝ with lower score units 9 units patients ore Ishak ak necroinflammatory S 8 ō 6 9 fibrosis Proportion than than 3 25 20 30 35 45 50 40 15 35 5 10 20 25 30 40 4 0 age (years) Figure 2. Panel A: Proportion of patients with a necroinflammatory score lower than 9 Ishak units

Clinical and histological characterization of liver disease in patients with transfusion-dependent β-thalassemia. A multicenter study of 117 cases

В

as a function of age. Panel B: Proportion of patients with a fibrosis score lower than 6 Ishak units as

a function of age.

Thalassemia • Research Paper

Early endeavors focused on Transfusion

- Transfusion + Chelation= life
- No transfusion: No life

Is it benign or malignant? An...emia or Leuk..emia?

10 Y OS for 2852 children with newly diagnosed ALL who were enrolled in 15 consecutive Total Therapy studies at SJCRH 1962-2007

Pui CH, Evans WE Semin Hematol. Semin Hematol. 2013 July; 50(3): 185–196

A Revised Definition for Cure of Childhood ALL

Medical Attitude Paradox: Benign diseases kill

Acute Leukemia is less likely to kill

Even Farmers are Comprehensive

So be comprehensive H.A.V.E Transfusion or Transplantation Pediatric ALL specialists Intense fight: "Face your enemy"& keep fighting until we die or we kill the enemy!

SCA & TM specialists

Challenges in the management of TM:

- The size of the problem
- Political unrest
- Economic issues
- Rigidity issues
- Awareness (medical Professionals): *let it go let it go let it go*
- WBMT mission is not clear: Sheikh to the audience.
 - The money of WBMT activity = 40 fellow x 6 months each at KFSHRC or 20 at UMN.

Perspectives

The inherited diseases of hemoglobin are an emerging global health burden

Table 1. Breakdown of the annual number of births with the different hemoglobin disorders from data available²

Major hemoglobin disorder No. of annual births

β thalassemia major	22 989
HbE β thalassemia	19 128
HbH disease	9 568
Hb Bart hydrops (α°/α°)	5 183
SS disease	217 331
S β thalassemia	11 074
SC disease	54 736

Global: 80-90 Millions carriers of Thalassemia genes **50,000–100,000 children** with β-TM die /year in L/M-Income countries Report of a Joint WHO–Geneva 17–19 May 2006.

<u>1st conclusion of the conclusion</sub></u>

TM kills at young age TM kills the future

Estimated Mid-point 1998-2007 Population for GCC States' Nationals by Gender.

Ten-Year Cancer Incidence 1998-2007 GCCCP Report, 2011

How much deaths due to Thal + SCA/year SCA in SA alone is 150,000 TM in SA: ?????

Minster of Health, Arab News 2015

GCCCP Report, 2011

SIA EXCLUDING	2010	2030	2050
Total population* (thousands) 2 822 917	3 474 665	3 846 616
% of global population	1 40,94	41,76	41,33
	1.4 1.4TN	SCA м/нk	DE

Transfusion + Chelation Transplantation HU (for SCA)

CHINA	2010	2030	2050
Total population* (thousands) 1	341 335	1 393 076	1 295 604
% of global population	19,45	16,74	13,92

Job and QOL will be a major goal of R/

THE JOB CREATION CHALLENGE

WITHIN SUB-SAHARAN AFRICA, THE ECONOMICALLY ACTIVE POPULATION IS EXPECTED TO CONTINUE TO INCREASE ACROSS ALL SUB-REGIONS, ESPECIALLY IN EASTERN AFRICA

Survival of thalassemia : an Italian success story

Borgna-Pignatti C et al., ann NY acad SCI 2005

Available transfusion service for Hb-pathies in the world: 17% only

WHO report 2015

Osman A slide

Global epidemiology of hemoglobin disorders and derived service indicators

WHO region	Estimated annual births β thalassaemias		Transfusion		
	Total	Transfusion- dependent	% of Tx-dependent patients transfused	Annual deaths because not transfused	
African	1 386	1 278	2.7	97%	
American	341	255	52.4	121	
EMRO	9 914	9 053	17.8	75%	

^a All figures are minimum estimates.

- Bernadette Modell, Matthew Darlison Volume 86, Number 6, June 2008, 480-487 - Bulletin of the World Health Organization

Yearly Cost of BTIC of TM

Type of costs	Total
Blood	1118.0
Medical Visits	182.9
Nursing Services	303.7
Laboratory Services	136.6
Diagnostic Services	216.0
Medicine	5026.4
Deferoxamine pump and other	155.0
consumer items in home	
Hospitalization	103.4
Splenectomy	44.8
Going to the service providing centers	205.3
Transportation	69.8
Lost opportunities for patients	356.2
Lost opportunities for patients'	217.4
families	
Building rent and other costs related to	186.3
buildings	
Lost welfare	No data ^b
Total	8321.8

Esmaeilzadeh F et al JRHS 2016; 16(3):111-115

Asian Experience & Available services For TM

		Iron chelation					
Country	Transfusion	DFO	L1	Exjade	BMT	PND	National program
Bangladesh		(+)	_			_	
Cambodia		(+)	—			-	
China							
Guangxi		(+)	(+)		(+)	+	
Hong Kong		+	+	(+)	+	+	+
Taiwan		+	+	(+)	+	+	+
India	Enough?	(+)	(+)		(+)	(+)	
Indonesia	Safe?	(+)	(+)			(+)	
Laos		(+)	—			-	
Malaysia	For all ?	+	+	(+)	+	+	+
Maldives		+	+		(+)	—	+
Myanmar		(+)	_			-	
Philippines		(+)	_	(+)		-	
Singapore		+	+	(+)	+	+	+
Sri Lanka		+	+			-	+
Thailand		+	+	(+)	+	+	+
Vietnam		(+)	(+)		(+)	_	

nal of Health Policy and Management

IJHPM

Comparison of Blood Transfusion Plus Chelation Therapy and Bone Marrow Transplantation in Patients with β-Thalassemia: Application of SF-36, EQ-5D, and Visual Analogue Scale Measures

Mehdi Javanbakht¹, Ali Keshtkaran², Hossien Shabaninejad^{3,4}, Hassan Karami^{2*}, Maryam Zakerinia⁵, Sajad Delavari⁶

QOL Component	SF-36	BTIC		BN	D	
	Subscales	Mean	SD	Mean	SD	P
PHYSICAL FUNCTIONING	PF	84.93	17.60	93.07	10.90	.004ª
ROLE LIMITATIONS	RP	58.88	38.32	77.84	29.14	.003ª
Bodily pain	BP	81.68	20.09	81.36	20.82	.928
General health	GH	64.24	21.82	68.41	20.22	.259
Mental Health	MH	65.66	19.78	70.55	15.48	.133
ROLE LIMITATIONS	RE	55.92	40.35	78.79	39.43	.001ª
Social functioning	SF	80.02	21.35	86.93	20.70	.058
Vitality	VT	65.89	18.24	69.89	16.96	.195
PHYSICAL COMPONENT SCALE	PCS	48.23	7.09	51.65	6.60	.005ª
MENTAL COMPONENT SCALE	MCS	45.19	9.76	49.53	9.59	.010

Better QOL after HSCT if done early & No cGVHD

Study	Tools used	Patients	Results and conclusions of the study
Cheuk et al, вмт 2008 (8)	WHOQOL- BREF(HK) PedsQLTM4.0 Cross-sectional analysis	74 TM on supportive care 24 TM > HCT	Adults >18 y: Overall health better after HCT – less medical aids, higher activity, better relationships and physical health. Children <18 y: Better physical function after HCT. Lower scores on school attendance restriction and hospital visits
Caocci et al, BBMT 2011(85)	PedsQLTM4.0 Before HCT, 3, 6, & 18 mos after HCT	28 TM-HCT patients	 Physical function declined until 3 mo> HCT then increased. No significant DD in emotional, social or psychosocial domains
La Nasa et al, Blood 2013 (86)	SF36 , FACT- BMT Cross-sectional analysis	109 Ex-TM (HCT 1980 - 2000) vs124 TM on Supportive care	 Higher HRQol following HCT. Older age & cGVHD affected HRQoL negatively
Javanbakht M et al., 2015 Int'l J health policy manag	SF-36 cross-sectional	Total 160 on BTIC vs. 50 after HSCT	Significant better physical function, Role limitation, mental component scale after HSCT. Other parameters favors HSCT .

• WHOQOL-BREF(HK) – World Health Organization Quality of Life Measure Abbreviated

- PedsQLTM4.0 Pediatric Quality of Life Version 4.0
- SF-36 Short Form 36 version 1 ,
- FACT-BMT Functional Assessment of Cancer Therapy Bone Marrow Transplant
- HCT- Hematopoietic Cell Transplant;
- cGVHD chronic graft-versus-host disease ,
- HRQoL Health related quality of life
- BTIC= Blood transfusion and iron Chelation

Not only Patients but also their parents are affected

Caocci et al. BMC Blood Disorders 2012, 12:6

RESEARCH ARTICLE

Open Access BMC

Blood Disorders

Health related quality of life in Middle Eastern children with beta-thalassemia

Differences in child and parent PedsQL domain scores, expressed as median and inter-quartile ranges

PEDsQL scale	Patients	Parents	Difference (95% CI)	P value
Physical Functioning	75 (56.3, 91.40)	75 (55.5, 85.18)	3.75 (-1.55, 7.8)	0 .112
Emotional Functioning	<mark>85 (</mark> 60, 100)	75 (50, 95)	10 (2.5, 15)	0.002*
Social Functioning	82.50 (60, 91.25)	75.8 (65, 90)	0.74 (-3.5, 7.5)	0.576
School Functioning	75.00 (50, 85)	70 (50, 80)	2.5 (-5, 7.5)	0.465
Psychosocial Health Summary	79.15 (61.88, 88.30)	70.3 (59.58, 83.72)	4.2 (0.85, 7.5)	0.015*
Total Summary Score	77.75 (61.45, 88.28)	74.35 (60.35 82.77)	2.45 (4.62, 4.9)	0.047*

Mohamed S.Y, 2017.

Transplant rates for the total number of HSCT in participating countries by WHO regions 2006-2008. (n of HSCT, allo- & auto- combined, by 10 million inhabitants).

SC

0 or no report

<30

> 300

TR per 10 mil Pop.: All HSCT 2006-2008

(average N. HSCT over 3 year period)

31 – 100 101– 300

WBMT 2012

EMRO/Africa: **2% of HSCT** EMRO/Africa: **2% of teams** Africa Teams = <**1% of world** World allo-HSCT for HB=

2.9% Afircan BMT for Hb: 4.1%

Gratwohl A et al., hematologica, 2013

Niederwieser D., WBMT meeting, Cape town, 2014

Why we are not offering TM transfusion or Transplantation?

• Where the money goes?????

Each warplane costs \$12,000 per hour to fly, and each helicopter \$3,000 per hour, according to IHS.

Math of War and TM management

- 10 hours x100 planes = 12,000x10 h x 100 planes = 12,000,000 USD
- 12,000,000 / 10,000 = **1,200 LC-BMT per day**
- Total LC-BMT in 1 mo= 36,000 BMT per month
- No criminal, no need for UN resolution but dissolution

Replace pilots by Hematologist

Who is responsible ?

•When will not remember the sword of our enemy, but the **silence** of our friends

An African preverb

Just start; we will reach there very soon

KED

The development of the National Thalassaemia Centre, Kurunegala, Sri Lanka.

В

The building contains wards for both children and adults, counselling facilities and laboratories for screening and field-study research. (A) Early construction. (B) Completed building.

治治

If they wanted to go they should have prepared ???

Real work No image No show !!

Clinic Science

Challenges in Transplantation of Thalassemia

- **1.** Information-education-consenting
- 2. Cost
- **3.** Prioritization (Paradox of Benign)

4. Donors

- 1. MSD & MRD
- 2. MUD, CBT
- **3.** HaploIdentical
- 6. Suppression of chronic inflammation pre-transplant

1-Information/Awareness

7% Low utility of curative strategies (BMT) for SCA is partly attributable to lack of information.

WBMT is the best venue for:

- 1- Awareness,
 - **2- Registries**
- **3- National centers**

• Jae GA et al., Ethnicity and Health. 2011

The majority of cancers in Africa are diagnosed at an advanced stage

Phasing out the solution for TM

Donors

Results of BMT for β – Thalasemia .

Historical results from Pesaro experience during 1980s-1990s

Pesaro Class	Regimen	OS%	TFS%
1	Bu 14 – Cy 200	93	90
2	Bu 14 – Cy 200	87	84
3	Bu14-Cy120-160	66	62

Lucarelli G et al., 1992 Sodani P, 2004 Angelucci E et al.,2009

Recent results are better : EBMT report Hb-pathy registry:

	Patients	Overall Survival	Thalassemia Free Survival	
<= 2 years	96	0.94 ± 0.03	0.90 ± 0.03	
2-5 years	388	0.92 ± 0.02	0.82 ± 0.02	
5-10 years	473	0.88 ± 0.02	0.81 ± 0.02	
10-14 years	248	0.94 ± 0.02	0.83 The earlier the bet	Hor
14-18 years	154	0.78 ± 0.04	0.70 Ine earner, the bet	ller
> 18 years	133	0.77 ± 0.04	0.74 ± 0.04	

- N: 1493 ß-TM
- Transplanted after 2000
- From **MSD** , (MRD, MUD, CBT)
- Stratified by age
- Median age 7.2 y (0.3–45.1)
- Only 133 (9.8%) were adults <u>></u>18 years
- Difference in outcome → p value of < 0.001

Adults: still an unmet needs

Centers Avoid Adults or Adults centers avoid or publishers avoid both

MSD or MRD transplantation for Thalassemia Major

Study	Number	Age	OS	TFS
Lucarelli G et al., NEJM 1990	222	Children	82	75
Lucarelli et al Blood 1996	107			
Argiolu F et al., BMT, 1997	37	Ciniaren		00
Clift RA et al., BMT, 1997	68	Children	94	81
Dennison D et al., BMT 1997	50	Advanced , Older	76	68
Ghavamzadah A et al., BMT1997	60	Children	83	73
Issaragrisi S et al., BMT 1997	21	Advanced, Older	76	53
Lin HP et al., BMT 1997	28	Children	86	82
Li CK et al., BMT 2002	44	Children	86	82
Lawson SE et al., Brit J Hematol 2003	54	Children	95	82
Di Bartolomeo P et al., Blood 2004	111	Children	90	86
Sodani P et al., Blood 2004	33	Children	93	91
Hongeng S et al, BBMT 2006	28	Children	92	82
	37class 1-2	Children	97	89
Isgro 2010	35 class 3	Children	87	80
	75 class 2	Children	91	88
Sablof 2011	64 class 3		ait & lose	
Gaziev J et al., Transplantation 2016	37	Cnilaren	SZ SZ	92
			Moha	med S. 2017

The French experience: 6 risk "YAACSS"

- 1. Year of transplant </> 1994: multiple factors
- 2. Age of patient 14 or above
- 3. ATG use
- 4. Class 1-2 vs 3
- 5. Splenectomy (*)
- 6. Sib vs. others

French experience

Risk Adopted Allogeneic Hematopoietic Stem Cell Transplantation Using a Reduced Intensity Regimen for Children with Thalassemia Major

Close your eyes

Outcomes of URD & CBT in Children & AYA with TM

First author	N° pts	Source	Age median years (range)	os 90s	TFS 80s	TRM 10	Rejection 105	aGvHD 25	cGvHD 15
La Nasa (2002) ¹²	32	BM	14 (2-28)	79	66	19	12.5	41	25
La Nasa (2005) ¹³	68	BM	15 (2-37)	79.3	65.8	20	13	40	18
Hongeng (2006) ⁵¹	21	BM	4 (0.7-12)	85.7	71	14.3	14.3	42	14
Locatelli (2011) ⁹	122	BM	10.5 (1-35)	84	75	16.4	13.1	28	13
Ruggeri (2011) ¹⁷	35	СВ	4 (0.5-14)	62	21	(34)	57	23	16
Jaing (2012) ¹⁶	35	CB	5.5 (1.2-14)	88.5	88.5	11.4	0	47	35
Li (2012) ¹⁵	52	BM/PB	6 (2-15)	92.3	90.4	7.7	1.9	9.6	0
Anurathapar (2014) ⁵²	26	BM/PB	8 (2-10)	94	82	7	0	28	15
Shah (2015) ¹⁸	9	CB	3.8 (1.5-7)	100	56%	0	44%	33%	11%

from:. La Nasa G et al., Med J Hemat Inf Dis 2016

URD & CBT

URD & CBT: TFS by Donor source and recipient Class/Age

Bernardo, MEet al., Blood, 2012.

RIC for Thalassemia using: FLU-ATG-Treosulfan

Number of patients	39 (100%)	Num
Gender		(n
Males	24 (62%)	ra
Females	15 (38%)	Cond
Age at HSCT (years, median, range)	8 (1-29)	Th
Pesaro class at time of HSCT		Tł
Class 1	16 (41%)	GvH
Class 2	11 (28%)	Cs
Class 3/adults	12 (31%)	
Type of donor employed		Num
Matched family donor	8 (21%)	(n
Matched unrelated donor	31 (79%)	Num
Stem cell source		INUIT
Bone marrow	35 (90%)	(n
Cord blood	2 (5%)	Graf
Peripheral blood	2 (5%)	Chin

Number of BM cells infused	
(nucleated cells $\times 10^8$ /kg; median,	5 (2-13)
range)	
Conditioning regimen	
Thiotepa + Treo + Flu	8 (21%)
Thiotepa + Treo + Flu + ATG	31 (79%)
GvHD prophylaxis	
$CsA + MTX^{a}$	8 (21%)
$CsA + MTX + ATG^b$	31 (79%)
Number of days to PMN recovery ^c	21 (14-30)
(median, range)	
Number of days to PLT recovery ^d	22 (11-32)
(median, range)	
Graft failure ^e	3 (8%)
Chimerism ^f (median, range)	100% (60–100)

HSCT, haematopoietic stem cell transplantation; Treo, Treosulfan; Flu, Fludarabine; ATG, anti-thymocyte globulin; GvHD, graft-versus-host disease; CsA, cyclosporine; MTX, Methotrexate; PMN, polymorphonuclear neutrophils; PLT, platelets.

Figure 2. Kaplan-Meier estimate of survival and survival with transfusion independence in patients given the combination of thiotepa, treosulfan, and fludarabine in preparation to the allograft.

Haplo HSCT for TM 2017

- •The majority of EMRO countries did it
- •Results : promising
- •Role of ATG and Risks of PTCy:
 - •HCV
 - Bilharziasis
 - •NecroInflammatory Liver with TM

- N:31
- Age: 10 (2-20)
- TCR-PBSC graft
- GF: 2/31; 29 → 100% DC
- A-GVHD:9/31 (Grade II only)
- C-GVHD: 5/31 (limited only)
- Projected OS/TFS @ 2y=95%

Principles, Themes and Promising conditioning

TM =

- chronic Inflammation
- Allo-immunization
- Immune Disturbance
- Germ line mutation
- High Disease Burden
- Iron-Overload
- 2 HLH

PTIS

Hydroxyurea Hypertransfusion (FLU + Dex) x5 d x 2 courses Intense chelation

TM=

Comorbidities

RTC

Less tissue reserve

TM=

HLA-disparity Reject & react (GVHD)

Change of paradigm of Conditioning

Thalassemia (Pre-) Transplant Platform

11

Haploidentical Hematopoietic Stem Cell Transplantation (Haplo-SCT) with Pre-Transplant Immunosuppression and Post-Transplant Cyclophosphamide (Post-Cy) in Severe Thalassemia: A Novel Approach Transplant for Nonmalignant Diseases

Suradej Hongeng¹, Samart Pakakasama¹,

Usanarat Anurathapan¹, Borje S. Andersson². ¹Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; ²Stem Cell Transplantation and Cellular Therapy, UT M.D. Anderson Cancer Center, Houston, TX

- Donors 11 Mothers 4 fathers
- 12/15 class3
- N:15 → 14/15 (93% FDC)
- 1/15 needed 2nd BMT
- Age: 16 (2-20)
- TCR-PBSC graft
- GF: 1/15; 14**→**100% DC
- A-GVHD: 6/15 (Grade I-III only)
- C-GVHD: 1/15 (limited only)
- Projected OS/TFS @ 2y=100%

To ""TRANSFUSE"":

- **1.** Safety is a major problem with C₁.
- **2.** Blood banking infra-structure
- **3.** Life-long commitment
- 4. Chelation
- **5.** Procurement
- 6. Cost , cost, and cost
- 7. Effectiveness compared to Transp
- 8. Let's be practical and go to WHO

For "TRANSPLANTation" :

- **C 1**. Safe now: well tested
 - **2.** Transfusion-free Survival
 - **3.** Once in life time for >90%
 - 4. No Chelation
 - **5.** No Procurement
 - 6. & 7. Cost: very cost effective if
 - you do it the Egyptian/Indian

way (15 K USD)

Recommendation summary of HSCT in Thalassemia Major

Indication	Transfusion dependency
When?	• ASAP
How?	 Better prepared with BTIC
Where?	• At experienced Centers
	Centers in high prevalence areas should get the
	necessary experience to perform alternate donor SCT
	• If comprehensive BTIC is not available, all sources of
	Stem cells should be entertained.
	Not all TM are equal: do necessary modifications
	• WBMT should have a more active role

Don't worry, one day I will be great

UNICEF/NYHQ2012-0531/Asselin

How much the cost of this house

ALTERNAL CONTRACTOR

AREA Y AND DANN DANK LEMAN ERN T'S OFFICE AND ON N

SIJIN

TIVILLIN OF

AMMONCH M SHOMMA

UCBT in India: Breaking the Cost Barrier: Abstract 4768

- Pediatric Hematology Oncology & BMT Unit, Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, India,
- Background UCBT) is the only feasible option for patients who need to undergo unrelated HSCT in India but lack of experience and huge costs are perceived barriers. Data from USA showed mean cost of graft for pediatric UCBT was \$58,910 and mean cost per day survived in first 100 days (excluding graft cost) was \$4522 ((Majhail NS et al. Pediatr Blood Cancer 2010;54:138–143). The costs of UCBT among children in India have not been described previously.
- Method -We calculated the costs of UCBT within the first 100-days among four Children who received UCBT at Sir Ganga Ram hospital from April 2008 to Dec
 2010. We also analyzed costs of transplantation in relation to patient age, weight, single vs.double cord, conditioning, Graft vs. Host Disease (GVHD) and mean duration of stay before day 100.
- Results The 100-day probability of OS was 100%. The mean cost per day survived (excluding costs of graft acquisition) was \$402 (range \$360-460)) for UCBT recipients. Average total cost of each UCBT was \$43500 (Range \$32000-52000). Average duration of stay in hospital in first 100 days was 89 days (range 75–100). All grafts were procured from a public cord bank in India. Average cost of graft per cord unit was \$5000. Diagnosis was thalassemia major-2, Familial Hemophagocytic Lympho Histiocytosis (HLH)-1 and AML-1.

• Lowest cost: AML (\$32,000) & highest: TM-Pesaro class III (\$52,000).

- Mean age was 2.75 years (range 1–5 year).
- Mean weight was 12.25 kg (range 10–16 kg).
- Mean cell dose infused was 7 × 10⁷ nucleated cells/kg weight of recipient (range 3–10 × 10⁷ nucleated cells/kg). Conditioning was Busulfan and Cyclophosphamide (BuCY) and Rabbit Anti-Thymoglobulin (ATG) for two patients (1 Thalassemia, 1 AML) costing \$1500 per patient, Fludarabine & Melphalan and Campath for HLH costing \$2500 and

• Treosulfan, Thiotepa, Fludarabine and ATG for class III TM cost: \$7,500.

- Mean cost per day for single cord was \$385 and for double cord UCBT was \$420. One patient rejected the graft. Three engrafted at median of 32 days (range 28 39 days). GVHD was seen in two patients (both with double cord). CMV reactivation was seen in all cases. Invasive aspergillosis was seen in one patient who had thalassemia and it lead to highest expenditure. Campath based conditioning was associated with maximum hospital stay in child with HLH. All had Lansky score >90 pre-transplant No one needed dialysis, mechanical ventilation or hepatic veno-occlusive disease.
- Conclusions
 - Total cost of UCBT in India is less than the cost of the UCBT graft in USA and

• Mean cost /day in India is almost 1/10th of cost in USA.

Low cost of UCBT in India would make this treatment feasible for many more patients who need to undergo unrelated HSCT.