Early Organ Toxicity Post HCT Wael Saber, MD, MS

A research collaboration between the National Marrow Donor Program (NMDP)/Be The Match and the Medical College of Wisconsin

100-Day Mortality by Year of HCT

Introduction

 Hepatic Veno-Occlusive Disease (VOD), Transplant-Associated Thrombotic Microangiopathy (TA-TMA), and Idiopathic Pneumonia Syndrome (IPS) are phenotypically distinct complications that occur early post HCT and are associated with high mortality rates

*Richardson PG, et al. BBMT 19 (2013) S88-90 *Laskin BL, et al. Blood 2011. 118: 1452-1462 *Yanik GA, et al. BBMT 20 (2014) 858-864

Introduction

- Endothelial cell injury is a key final pathogenetic finding
- The phenotype is governed by the site of the endothelial cell injury
 - > VOD sinusoidal endothelial cells
 - ➤ TA-TMA kidney
 - ≻IPS lung

*Richardson PG, et al. BBMT 19 (2013) S88-90 *Laskin BL, et al. Blood 2011. 118: 1452-1462 *Yanik GA, et al. BBMT 20 (2014) 858-864

Overall Survival in Patients Who Developed Organ Disorders Within the First 100 Days Post HCT

VOD

- Conditioning regimen mediated injury to sinusoidal endothelial cells in zone 3 of the hepatic acinus → high levels of cytokines (TNF-α and IL-1) and adhesion molecules
- Activation of pro-inflammatory pathways leading to further damage
- Gaps between endothelial cells
 Activation of cells
 Compressive narrowing of the sinusoids

Coppell JA, et al. Biol Blood Marrow Transplant. 2010 Feb;16(2):157-68

Cumulative Incidence of Post-HCT Organ Disease

Coppell JA, et al. Biol Blood Marrow Transplant. 2010 Feb;16(2):157-68

Fig 2. Contour lines estimating probability of developing severe VOD as $\geq 30\%$, $\geq 40\%$, $\geq 50\%$, and $\geq 60\%$ using total serum bilirubin (mg/dL) and percent weight gain above baseline. If the plotted point lies above the probability line, the probability of severe VOD is or exceeds the probability of that line.

*Bearman SI, et al. JCO 1993. 1729-1736

Risk Factors

- Pre-existing liver disease, including iron overload
- Exposure to gemtuzumab ozogamicin
- Allogeneic HCT vs. autologous HCT
- Second HCTs
- Conditioning regimen intensity
- Busulfan in combination with cyclophosphamide
- Underlying disease
- Age

Incidence of Veno-Occlusive Disease by Age at HCT

& MARROW TRANSPLANT RESEARCH

Year of HCT: 2008-2012 12

Incidence of Veno-Occlusive Disease by Conditioning Regimen Intensity

Incidence of Veno-Occlusive Disease by Sirolimus Use - Myeloablative Conditioning Regimens with Busulfan Only

Non-significant Factors

- KPS
- Donor type
- Pre-existing liver disease
- TBI
- Busulfan
- Second HCT

Prediction of VOD

- <u>Hypothesis:</u> VOD may be predicted by the measurement of biomarkers of endothelial injury, particularly in patients receiving sirolimus
- von Willebrand Factor
- Thrombomodulin
- Soluble Intracellular Adhesion Molecule-1 (ICAM-1)
- E-Selectin

vWF

*Cutler C, et al. BBMT 2010. 16 (8): 1180-1185

Thrombomodulin / ICAM-1

*Cutler C, et al. BBMT 2010. 16 (8): 1180-1185

Pre-Emptive Therapy of VOD

TA-TMA

- EBMT:
- 2-year incidence of 6.7% (95% CI 4-9)
- median time of onset 44 days (range 13-319) post HCT
- A specific cause of small vessel injury remains unknown
- No association with low ADAMTS13 activity

Cumulative Incidence of Post-HCT TMA

Category	Blood and Marrow Transplant Clinical Trials Network ¹⁸	International Working Group of the European Group for Blood and Marrow Transplantation ⁵⁸	Probable TMA as defined by validation study by Cho et al ⁵³
Schistocytes	\ge 2 per high-power field in peripheral blood	> 4% in peripheral blood	≥ 2 per high-power field in peripheral blood
LDH	Increased above institutional baseline	Sudden and persistent increase	Increased
Renal function	Doubling of serum creatinine or 50% decrease in creatinine clearance from baseline before transplantation		
Platelets		Thrombocytopenia: $<$ 50 $ imes$ 10 ⁹ /L or a \ge 50%	Thrombocytopenia: $<$ 50 $ imes$ 10 ⁹ /L or a
		decrease in platelet count	$\ge 50\%$ decrease in platelet count
Red cells		Decreased hemoglobin or increased red blood cell transfusions	Decreased hemoglobin
CNS	Unexplained neurologic dysfunction		
Coombs test	Negative direct and indirect		Negative
Haptoglobin		Decreased	Decreased
Other			No coagulopathy

Table 1. Current diagnostic guidelines for TA-TMA

Elevated systolic blood pressure 3 days before stem cell infusion predicted later TA-TMA.

Laskin B L et al. Blood 2011;118:1452-1462

A "renal-centric" approach to detect TA-TMA.

Laskin B L et al. Blood 2011;118:1452-1462

Proposed Risk Factors

- Transplant type: Allogeneic HCT vs. autologous HCT
- Busulfan, fludarabine, platinum based chemotherapy
- TBI
- Fungal and viral infections
- Calcineurin inhibitors
- Use of sirolimus
- GVHD
- Coagulation cascade and role of complement

By Sirolimus Use

26

Non-significant Factors

- Age
- KPS
- Graft source
- Conditioning regimen intensity
- TBI
- Busulfan

Serum Neutrophil Extracellular Trap level as a novel biomarker of TA-TMA

Figure 3. High NET levels are a risk factor for TA-TMA. (A) The incidence of TA-TMA relative to the Day0/PRE serum NET ratios. (B) The incidence of TA-TMA relative to the 4WK/PRE serum NET ratios. (C) The incidence of TA-TMA relative to absolute serum NET levels at 4WK. Note that elevations of either the serum NET ratios (Day0/ PRE and 4WK/PRE) or absolute NET levels at 4WK are significant risk factors for TA-TMA.

Arai Y, et al. BBMT 19 (2013) 1683-1689

NET levels and risk of TA-TMA

- In multivariate analysis:
- Day 0 NET/Pre, over/under 1.1: RR 3.55 (1.03-12.2; p=.04)

Arai Y, et al. BBMT 19 (2013) 1683-1689

Therapy

- PE
- Withdrawal of CI
- Rituximab
- Novel agents

Early Recognition

IPS

- Acute noninfectious lung injury
- Incidence 2% -10%
- a median time of onset 14-42 days post HCT
- CIBMTR: 100-day incidence of 6.2% (95% CI 5.7-6.9)
- Associated with high mortality rates (>50%)

Development of Organ Disease in First 100 Days Post-HCT

Incidence by Age at HCT

By Graft Source

34

By Donor Type

By Conditioning Regimen Intensity

By TBI Use - Myeloablative Conditioning Regimens Only

By Presence of Pulmonary Disease Pre-HCT

Study schema: BMT CTN 0403

*Yanik GA, et al. BBMT 20 (2014) 858-864

Response Rates: BMT CTN 0403

Therapy	Etanercept + steroids (n=16)	Placebo + steroids (n=18)		
Day 28 Response (%)	62.5% (95% CI: 35.4-84.8)	66.7% (95%CI: 41.0-86.7)		
Day 56 Response (%)	56.3% (95% CI: 29.9–80.3)	50.0% (95% CI: 26.0-74.0)		

p = 0.80

*Yanik GA, et al. BBMT 20 (2014) 858-864

Response and FiO2 at study entry

BMT CTN 0403:

- Responses were higher if treated at lower FiO2.
- Median FIO2 at study entry = 40%

Response by % FiO2 at study entry							
≤ 40% > 40% Unknown							
Etanercept + steroids	8/11 (73)	2/4 (50)	0/1				
Placebo + steroids	10/11 (91)	1/6 (17)	1/1				

Biomarkers in Lung injury

BMT CTN 1202 Protocol

	Days Post-HCT									
Biomarker Sample Type Subjects		Pre-HCT	7	14	21	28	42	56	90	
Approach		day -1 or 0	±2	±2	±2	±2	±3	±3	±10	
Protoomic	Serum (5 mL blood)		x	х	х	х	x	х	х	x
Proteomic 1500 patients EDTA plasma (5 ml blood)	x	x	X	x	X	x	x	x		
Gene	PAXgene Lysates- source WBC RNA (15 mL blood)	240 patients ¹				x			x	x
Expression	CytoChex tube for Immunophenotyping (5 mL blood)	240 patients ¹				x			x	х

Conclusion

- VOD/TA-TMA/IPS are associated with poor survival post HCT
- Contemporary estimates of the cumulative incidences are lower than published data

 clinical trial design implications
- Emerging biomarkers should pave the way for better insight into pathogenesis and should guide future therapeutic trials

Acknowledgments

- Mary Horowitz
- Paula Watry
- Corey Cutler
- Greg Yanik
- Terry Hahn
- Sandy Korman

Value of a Consensus Panel to **Adjudicate Cause-Specific Mortality** after Unrelated Donor Allogeneic HCT for Use as the Primary Endpoint in a Genome-Wide Association Study (GWAS) Theresa Hahn, PhD

Roswell Park Cancer Institute

Buffalo, NY

Funding

- Supported by NHLBI R01
- HL 102278
- Genetic susceptibility to unrelated donor stem cell transplant-related mortality

Objective

- Perform GWAS to test the contribution of recipient, donor, and R-D genetic variation to TRM by 1 year after URD HCT
- TRM is a complex phenotype, encompassing several subtypes (GVHD, infection, organ failure/RRT, other)
- Data and samples from CIBMTR/NMDP (>150 U.S centers)
- Risk of misclassification/confounding due to complex phenotype and reporting variability with high number of centers

Majority of Deaths Occur <1 year post-HCT

Lee, et al, Blood 2007

TRM subtypes may have unique and shared genetic variants

Genetic Variants Associated with TRM: Unique Genetic Variants with Little overlap between TRM subtypes Genetic Variants Associated with TRM: Shared Genetic Variants with Major overlap between TRM subtypes

Incidence of Veno-Occlusive Disease by Sirolimus Use for GVHD Prophylaxis

Incidence of Veno-Occlusive Disease by KPS

52

Incidence of Veno-Occlusive Disease by Donor Source

Incidence of Veno-Occlusive Disease by TBI Use -Myeloablative Conditioning Regimens Only

Incidence of Veno-Occlusive Disease by Busulfan Use - Myeloablative Conditioning Regimens Only

55

Incidence of Veno-Occlusive Disease by Prior Auto HCT - Patients with Non-Hodgkin Lymphoma Only

Incidence of Veno-Occlusive Disease by Presence of Liver Disease Pre-HCT

Incidence of TA-TMA by Age

& MARROW TRANSPLANT RESEARCH

Year of HCT: 2008-2012 58

Incidence of TA-TMA by KPS

Incidence of TA-TMA by Graft Source

Incidence of TA-TMA by Conditioning Regimen Intensity

Incidence of TA-TMA by TBI Use Myeloablative Conditioning Regimens Only

Incidence of TA-TMA by Busulfan Use Myeloablative Conditioning Regimens Only

63

Incidence of IPn/Pulmonary Hemmorhage by KPS at HCT

Incidence of Veno-Occlusive Disease by Graft Source

Patients

	SIR+VOD+	SIR+VOD-	SIR-VOD+	SIR-VOD-
Sample Size	13	26	9	15
Age, median (range)	45 (19-59)	42.5 (29-56)	34 (19-51)	48.5 (31-58)
Gender, male (%)	69	31	33	80
Donor Type				
Matched Related (%)	15	85	33	60
Matched Unrelated (%)	77	15	67	33
Time to neutrophil recovery Median (range)	14 (10-20)	13 (10-21)	17.5 (13-27)	16 (13-20)
Time to platelet recovery Median (range)	29 (14-138)	15 (8-39)	20 (15-102)	18 (14-26)
Acute GVHD (%)				
Grade 0 - I	69	69	53	44
Grade II - IV	23	31	40	56

*Cutler C, et al. BBMT 2010. 16 (8): 1180-1185

Are there situations in which corticosteroids alone are sufficient to treat IPS

- After reduced intensity (RIC) regimen?
 High response rates to steroids alone (71%) if post-RIC.
- Early in the course of IPS (lower FiO2 levels)?
 High response rate to steroids alone (91%) if FiO2 ≤ 40%
 Low response rates to steroids alone (17%) if FiO2 > 40%

Modified seattle criteria (Shulman & Hinterberger, 1992)	Baltimore criteria (Jones <i>et al</i> , 1987)
Two of the following criteria must be present within 20 d of transplant:	Bilirubin must be >34.2 µmol/l (2 mg/dl) within 21 d of transplant and two of the following criteria must be present:
Bilirubin >34·2 µmol/l (2 mg/dl)	Hepatomegaly
Hepatomegaly or right upper quadrant pain	Ascites
Weight gain (>2% from pre-transplant weight)	Weight gain (>5% from pre-transplant weight)

Table I. Clinical criteria for veno-occlusive disease.

*Dignan FL, et al. BJH 2013. 163: 444-457 *Shulman HM & Hinterberger W. BMT 1992. 10: 197-214 *Jones RJ, et al. Transplantation 1987. 44: 778-783

Modeling

Time	Biomarker	OR** (95% CI)	p **
Day -1	vWF>=1200 mU/mL	2.57 (1.27 - inf)	0.009
Day +7	vWF>=1400 mU/mL	2.35 (1.23 - inf)	0.01
	TM>=100 ng/mL	2.35 (1.23 - inf)	0.01
	sICAM1>=400 ng/mL	3.04 (1.25 - inf)	0.01

Incidence of TA-TMA by Donor Type

Biomarkers in Lung Injury post-HCT Pulmonary Biorepository at Univ Michigan

Demographics: BMT CTN 0403

Factor		Etanercept (%) n= 16	Placebo (%) n = 18
Gender	Male	8 (50)	8 (44)
	Female	8 (50)	10 (56)
Age (yrs)			
	Median	47.7	46.4
	Mean	47.9	47.8
	SD	± 14.4	± 11.6
Disease			
	AML/MDS	3 (18)	11 (61%)
	ALL	3 (18)	4 (22)
	NHL	3 (18)	0 (0)
	Other	6 (38)	2 (11)

Prospective Multi-Center Cohort for the Evaluation of Biomarkers Predicting Risk of Complications and Mortality Following Allogeneic HCT

BMT CTN 1202 John Levine, Co-Chair John Hansen, Co-Chair