

Allo-HCT in Bone Marrow Failure Syndromes

A/Prof Nada Hamad

BSc MSc Forensic (hons) MBBS (hons) FRACP FRCPA SpeCetClinRes (Oncology)

TCT, Clinical and Laboratory Haematologist SVH

ANZTCT President | NSW BMT Network Chair | ALLG TCT Chair

UNSW Medicine EDI Deputy Co-Chair | Lancet Haematology EDI Lead

Pronouns: She/Her/Hers

On Gadigal Land

Worldwide Network for Blood and Marrow Transplantation NGO in official relations with World Health Organization

SAA

- Long-term survival ≥90%:
 - 5-year OS has improved in consecutive HCT eras
 - 58% Pre 2000, to 73% in 2001–2010, and 94% in 2011–2018.
 - Better donor selection
 - A reduction in the incidence, severity, and mortality from aGVHD
 - A reduction in the incidence of graft rejection
 - Early HCT before the onset of severe infections
 - Avoidance of transfusions prior to HCT

Upfront allo-HCT Rationale

Improved outcomes with HCT

Risks of severe infections

Risks of excessive blood product transfusions

Late clonal disorders such as MDS/AML with IST

Evidence of Efficacy

Patient selection in real life is different to trials

- Early outcomes may favour IST but HCT is curative
 - 2 meta-analyses (7955 and 302 pts) found OS ≥IST
 - Peinemann et al PLoS One 2011 and Peinemann et al Cochrane Database Syst Rev 2013
 - Innovations in HCT & IST make historical comparisons difficult

• Patient preferences need to be taken into account

Disease / Patient / Donor Factors

- SAA and vSAA have a higher risk of poor outcomes without HCT
- Outcomes historically been better in younger patients
 - But growing evidence good outcomes in older patients
 - OS as high as 85% in >50y
 - Sheth et al Blood Adv 2019
 - Rice et al BBMT 2019
- Comorbidities
 - Infections and/or renal, hepatic, or cardiac dysfunction may preclude HCT
- MRD>MUD
 - Closer HLA matching reduces the risks of graft failure and GVHD
 - Better MUD outcomes make this almost comparable option to MRD
 - Dufour et al Br J Haematol 2015 and Kennedy-Nasser et al BBMT 2006
 - MRD faster access

How to achieve the best outcomes: Pre HCT

- Eliminate other diagnoses eg MDS/Mineral def/Fanconi
- Confirm eligibility by assessing organ function
- Identify active or latent infections
- Transfusion risk reduction
 - \downarrow transfusions to avoid RBC Ag sensitisation \rightarrow graft failure
 - Leucodepleted/ irradiated products ↓ TA-GVHD or FNHTR
 - CMV negative recipients should receive CMV-negative blood products

How to achieve the best outcomes: HCT

- Optimal donor: MRD>MUD
 - Limited evidence with syngeneic, cord or haplo

- Stem Cell source: Aim is to minimise GVHD
 - Historically BM preferred but less and less practical
 - HCT in 1448 pts MRD/MUD 2005 and 2009 OS advantage with BM
 - Bacigalupo et all Haematologica 2015
 - No direct PB vs BM comparison

How to achieve the best outcomes: HCT

- MRD conditioning:
 - Most common Cy-ATG: Cy 50 mg/kg/day on d -5 to -2 ATG 5 mg/kg/d on d-4 to -2
 - Need accurate Cy dose due to cardiotoxicity
 - Aljurf et al BMT 2013
 - Older patients FC-ATG
 - Flu 30 mg/m2/d on d 5 to -2; Cy 30 mg/kg on d -5 to-2; ATG 2.5 mg/kg on d -4 to-2
 - Similar results <40 vs >40 y: TRM (5.4% vs 11.1%, p = 0.19) [18] and OS ((93.7% vs 88.9%, p = 0.20)
 - Shin et al BMT 2016
 - Rabbit preferred over horse ATG ↓ rates of a+cGvHD
 - Kekre et al Haematologica 2017
- MUD Conditioning: various Cy ATG, FC-ATG-TBI, FCC
 - FC-ATG-TBI: addition of TBI 2 Gy
 - Anderlini et al Lancet Haem 2015
 - FCC: Campath 10 mg/kg on days -7 and -3
 - Avoids TBI and associated with mixed T-cell chimerism without relapse or graft failure
 - Marsh et al BMT 2014
 - Hamad et al BBMT 2014

Complications and Supportive care

- GVHD prophylaxis: MTX and CNI
 - CNI alone eg in FCC
- Graft failure 10-20%
 - Minimise transfusion pre HCT
 - ATG in addition to Cy +/-Fludarabine
 - Adequate cell dose: nucleated cells $>3 \times 10^8$ /kg or 2×10^6 CD34+ cells/kg
 - Pulsipher et al Pediatr Blood Cancer 2020
- Infection prophylaxis and treatment
 - Bacterial, Fungal, Viral
 - PTLD (single dose 200mg rituximab)
 - Peffault de Latour et al Blood 2018
- Transplant late effects including fertility

Fanconi Anaemia

- Rare
- Usually treated with supportive measures
 - androgens, and growth factors
- In severe BMF, MDS, or AML HCT OS 70-90%
 - Poorer outcomes in MDS/AML and older age (>10)
 - Peffault de Latour et al Blood 2013
- MRD>MUD
- Unique sensitivity to HCT conditioning agents
 - Evidence favours lower dose Cy (↓TRM)
 - Zanis-Neto et al BJH 2005
 - ATG associated with better outcomes (↓ GVHD? ↑Graft failure)
 - Fludarabine associated with better outcomes (\downarrow graft failure, \downarrow GVHD \downarrow TRM and \uparrow OS)
 - Wagner et al Blood 2007

Summary

HCT outcomes in BMF have shown significant improvement in survival

Need to consider contemporary alternatives in non HCT treatments

- Patient, donor and stem cell source selection important
 - Haplo still experimental

 Conditioning regimen improvements with ATG/Campath and Fludarabine additions to Cyclophosphamide